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Abstract

Incomplete preferences are likely to arise in real-world pref-
erence aggregation and voting systems. This paper deals
with determining whether an incomplete preference profile
is single-peaked. This is essential information since many in-
tractable voting problems become tractable for single-peaked
profiles. We prove that for incomplete profiles the problem of
determining single-peakedness is NP-complete. Despite this
computational hardness result, we find four polynomial-time
algorithms for reasonably restricted settings.

1 Introduction

Both human and automated decision making often have to
rely on incomplete information. The same issue arises in
joint decision making – voting – in multi-agent systems.
For example, the majority of preference data collected on
preflib.org (Mattei and Walsh 2013) is incomplete.
Konczak and Lang (2005) distinguish two main sources of
incompleteness: The first one is intrinsic incompleteness
where the voter is unable or unwilling to give complete in-
formation, i.e., a total order on all candidates. The second
one is epistemic incompleteness where the voters do have
preferences specified by total orders but at the time of deci-
sion making these total orders are not fully available. Also a
combination of these two scenarios is possible.

Whereas complete preferences are usually modeled as to-
tal orders, incomplete preferences can be modeled as partial
orders and are therefore a more general concept. In particu-
lar, the determination of winners becomes harder since vot-
ing protocols usually require total orders. It is therefore nec-
essary to consider completions of incomplete votes. Com-
pletions of incomplete votes are total orders that are com-
patible with the original partial orders. The determination
of possible and necessary winners in incomplete elections
is often NP-hard and thus a fast winner determination is
not feasible (Konczak and Lang 2005; Walsh 2007; Betzler
and Dorn 2010; Pini et al. 2011; Xia and Conitzer 2011;
Baumeister and Rothe 2012).

A popular approach to deal with hardness of voting prob-
lems is to consider domain restrictions. The most common
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restriction is single-peakedness (Black 1948) (see prelimi-
naries for a definition). For example, computing the win-
ner of a Dodgson or Kemeny election, though ΘP

2 -complete
in general (Hemaspaandra, Hemaspaandra, and Rothe 1997;
Hemaspaandra, Spakowski, and Vogel 2005), can be done
in polynomial time for single-peaked elections (Brandt et
al. 2010). Also the complexity of manipulation and control
problems often decreases (Faliszewski et al. 2011). These
results let us hope that efficient, polynomial time algorithms
for computing possible and necessary winners of single-
peaked, incomplete elections could be found. Walsh (2007)
started investigating this issue and also pointed out a cen-
tral question in that regard: What happens if the axis for
which the incomplete preference profile is single-peaked is
not given as part of the input but has to be determined?

Our paper deals with this question, namely how to deter-
mine single-peakedness for incomplete elections. In the fol-
lowing, let n denote the number of votes and let m denote
the number of candidates. The main results are as follows:

• We prove that determining whether an incomplete prefer-
ence profile is single-peaked is NP-complete. This is in con-
trast to the case of complete preferences for which single-
peakedness can be determined in linear time (Escoffier,
Lang, and Öztürk 2008). Furthermore, we strengthen this
result by showing that NP-completeness still holds if one
voter completely specifies his preferences.

Apart from these hardness results, this paper contains four
polynomial time algorithms:

• The first algorithm requires that the preference profile
contains at least one complete vote, i.e., a total order. The
algorithm is applicable to weak orders (see Figure 1 for an
example and the preliminaries for a definition). We obtain a
runtime ofO(m · n). This algorithm is an improvement over

the algorithm by Escoffier, Lang, and Öztürk (2008) since it
is applicable to a broader class of preference profiles (weak
orders instead of total orders) while maintaining its runtime.

• Our second algorithm is 2-SAT based. It also requires a
total order but is applicable to local weak orders, which are a
generalization of weak orders. This more general algorithm
does not run in linear time but requires O(m3 · n) time.

• In contrast to the previous two algorithms, the third al-
gorithm does not require the profile to contain a total or-
der. However, it is restricted to top orders. Top orders rank
an arbitrary number of top candidates; all remaining candi-



dates are ranked last and incomparable to one another (see
Figure 1 for an example). This algorithm has a runtime of
O(m2 · n).
• Finally, we have considered the problem of determining
single-peakedness for an already given axis. We prove this
problem to be polynomial-time solvable even for incomplete
profiles consisting of partial orders.

2 Preliminaries
In this paper, preferences are represented by different types
of orders (see Figure 1 for examples). The most general type
are partial orders. A partial order P on a set X is a reflexive,
antisymmetric and transitive binary relation on X . We say
that y is ranked above x if xPy holds. If for two elements
x, y ∈ X neither xPy nor yPx holds, these two elements
are incomparable. A partial order where the incomparability
relation is transitive is called a weak order. A weak order can
thus be considered a total order with ties. Weak orders are
also referred to as bucket orders (elements that tie are in the
same “bucket”), cf. (Fagin et al. 2006). A weak order where
every incomparable element is minimal is called top order.
The ranked candidates of a top order T are those that are
not incomparable to another candidate. We would like to re-
mark that top orders appear as top lists in (Dwork et al. 2001;
Fagin, Kumar, and Sivakumar 2003) and as top-truncated
votes in (Baumeister et al. 2012). A partial order with no in-
comparable elements is called total order. Any partial order
P can be extended to some total order T such that aPb im-
plies aTb; T is then a (not necessarily unique) extension of
P . Finally, we define a local weak order P on a set X to be
a partial order on X with the following property: there exist
sets X1, X2 with X1∪X2 = X such that the elements in X1

are incomparable to every other element in X and the profile
P restricted to X2 is a weak order. Intuitively, a local weak
order is a weak order together with some isolated elements
for which absolutely no information is available. Note that
we do not distinguish between tied and incomparable ele-
ments in this paper; both are treated in the same way.

Total orders are denoted by 〈c1 > c2 > . . . > ck〉. We
use 〈c1 > c2 > . . . > ck > •〉 to denote a top order where
c1, . . . , ck are ranked as stated and all other elements (usu-
ally the remaining candidates in C) are ranked last, i.e., are
minimal elements. We use 〈〉 to denote the empty order rela-
tion. We sometimes use set operators (∪,∩, \) on top orders
with the intended meaning that we apply these operators to
the corresponding sets of ranked candidates.

We would now like to address the usefulness of these or-
ders for expressing preferences. Total orders allow to fully
specify a ranking of options. Given a large set of options,
this might be unfeasible. Partial orders, on the other hand,
allow to specify the relative order of any pair of options.
Thus they can be seen as a very general formalism for rep-
resenting incomplete preferences. They are compatible with
total orders in the sense that partial orders can always be
extended to total orders. Weak orders are less general than
partial orders but arise in many natural scenarios. For ex-
ample every real-valued utility function implies a weak or-
der (candidates with the same utility tie, i.e., are incompa-
rable). Local weak orders correspond to partial real-valued

Total Top Weak Local weak Partial
order order order order order

Figure 1: The order zoo: examples of different types of or-
ders that are used to specify preferences.

utility functions and thus arise in scenarios where voters do
not have knowledge about all candidates. If the elicitation
of preferences is costly, one might ask only for the most im-
portant (top ranked) options of each voter. In such a case, top
orders arise. Top orders also are the natural type of order for
specifying preferences in some scoring protocols. We will
further comment on scoring protocols and top orders at the
end of the paper.

Throughout this paper we use C to denote the set of can-
didates or options. Votes are considered to be either partial,
local weak, weak, top or total orders. For a vote Vi, we use
x ≻i y to denote that (yVix) ∧ (x 6= y), i.e., x is ranked
strictly higher than y. If there is only one vote under consid-
eration, usually denoted by V , we omit the index and write
x ≻ y. A tuple (V1, . . . , Vn) of votes is called a (prefer-
ence) profile of {partial orders, weak orders, top orders, to-
tal orders}, depending on the type of orders. Given a vote V
and a set of candidates C ′ ⊆ C, we define V [C ′] to be the
vote V restricted to candidates in C ′. Analogously, given a
preference profile P = (V1, . . . , Vn), we define P[C ′] to be
(V1[C

′], . . . , Vn[C
′]). We denote the number of candidates

with m and the number of votes with n.

3 Single-peaked Profiles

We start by giving a definition for single-peaked profiles of
total orders and then extend this definition to partial orders.
A central concept is that of an axis, which is a total order on
C. Let A be an axis. Throughout this paper we write x < y
instead of xAy. (Note that we use ≻ for votes and < for
axes.) Our definition of single-peakedness for profiles of to-
tal orders as well as for profiles of partial orders is based on
so-called valleys.

Definition 1 (v-valleys). Let V be a partial order on C. A
vote V contains a v-valley with respect to an axis A if there
exist c1, c2, c3 ∈ C such that c1 < c2 < c3, c2 ≺ c1 and
c2 ≺ c3.

The definition of v-valleys suffices to define single-
peakedness for profiles of total orders: A profile P of total
orders is single-peaked with respect to A if no vote V ∈ P
contains a v-valley with respect to A (and thus every vote
has only a single “peak”). A profile of total orders is single-
peaked consistent (or simply, single-peaked) if there exists
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Figure 2: What v-valleys and u-valleys may look like.

some axis A such that P is single-peaked with respect to A.
We now want to extend this definition to profiles of partial

orders. The natural way is to consider extensions of partial
orders to total orders:

Definition 2. Let P = (V1, . . . , Vn) be a profile of par-
tial orders. The profile P is single-peaked with respect to
an axis A if for every k ∈ {1, . . . , n}, Vk can be ex-
tended to a total order V ′

k such that the profile of total orders
P ′ = (V ′

1 , . . . , V
′
n) is single-peaked with respect to A.

While it is also conceivable to require that every extension
is single-peaked, this would yield an extremely restrictive
definition. In this sense, our definition seems to be prefer-
able.Next, we want to find an equivalent definition based on
valleys, for which we require also u-valleys:

Definition 3 (u-valleys). Let V be a partial order on C. The
vote V contains a u-valley with respect to A if there exist
distinct a, b, c, d ∈ C with a < b < d and a ≻ b as well as
a < c < d and d ≻ c.

In Figure 2 a graphical representation of v- and u-valleys
is shown. These two types of valleys allow a characterization
of single-peakedness for profiles of partial orders.

Lemma 4. Let P = (V1, . . . , Vn) be a profile of partial
orders. The following two statements are equivalent.

(i) The profile P is single-peaked with respect to A.

(ii) No vote V ∈ P contains either a u-valley or v-valley with
respect to A.

This lemma immediately yields a polynomial time algo-
rithm for checking whether an incomplete profile is single-
peaked with respect to a given axis:

Theorem 5. Checking whether a profile of partial orders is
single-peaked with respect to a given axis can be done in
O(n ·m4) time.

Proof. For every quadruple of candidates and every vote,
one has to check whether a u- or v-valley arises.

Let T ∈ {partial order, local weak order, weak order, top
order, total order} be a type of order. In this paper we are
going to study the following problem:

T SINGLE-PEAKED CONSISTENCY

Instance: A profile P of type T , a set of candidates C.
Question: Is P single-peaked consistent?

Note that in contrast to Theorem 5, the input of this prob-
lem does not include an axis. The TOTAL ORDER SINGLE-
PEAKED CONSISTENCY problem is known to be solvable
in polynomial time (Bartholdi and Trick 1986; Doignon and
Falmagne 1994; Escoffier, Lang, and Öztürk 2008). In the
next section, we show that this is likely not to be the case for
partial orders and even local weak orders.

4 Hardness Results

Theorem 6. The LOCAL WEAK ORDER SINGLE-PEAKED

CONSISTENCY problem is NP-complete.

Proof. We reduce from the NP-complete BETWEENNESS

problem (Opatrny 1979). A BETWEENNESS instance con-
sists of a finite set S and a set T containing (ordered)
triples of distinct elements of S. The decision problem asks
whether there is a total order L such that for every triple
(a, b, c) ∈ T we have either aLbLc or cLbLa. Intuitively, a
triple (a, b, c) ∈ T corresponds to the constraint that b has to
lie “in between” a and c on the total order L.

We construct an incomplete election (C,P) with C = S,
i.e., we identify elements in S with candidates. The prefer-
ence profile P consists of two votes for each triple (a, b, c):
the partial orders {a ≻ c, b ≻ c} and {b ≻ a, c ≻ a}. These
two votes form a valley on any axis with c between a and
b and on any axis with a between b and c. Thus b has to be
between a and c on any single-peaked axis.

Corollary 7. The PARTIAL ORDER SINGLE-PEAKED

CONSISTENCY problem is NP-complete.

The proof of Theorem 6 uses elections where the votes
contain very little information: only two pairs of candidates
are comparable in each vote. We know that determining
single-peaked consistency is possible in polynomial time if
every vote is a total order, i.e., all votes contain complete in-
formation. Now the question arises: what happens if only a
single voter provides complete information? Having a single
completely specified vote has been found to be helpful in a
related context: it allows to efficiently elicit single-peaked
preferences using only few comparison queries (Conitzer
2009) and thus reduces the communication complexity of
preference elicitation. However, in our case such a voter
does not provide enough additional information for a de-
crease in (computational) complexity.

Theorem 8. The PARTIAL ORDER SINGLE-PEAKED CON-
SISTENCY problem is NP-complete even if the preference
profile contains a total order.

Proof. We reduce from SET SPLITTING: Let X be a finite
set. Given a collection Z of subsets of X , is there a partition
of X into two subsets X1 and X2 such that no subset of Z
is contained entirely in either X1 or X2? This problem is
NP-complete even if the sets in Z have cardinality 3.

Let X = {c1, . . . , cm}. For the construction, we identify
the elements of X with candidates and add an additional
candidate x. For each set {ci, cj , ck} ∈ Z with i < j < k we
introduce one vote: {ci ≻ cj , x ≻ ck}. In addition, we add
the vote x ≻ cm ≻ · · · ≻ c1. One can show that the resulting
preference profile P is single-peaked if and only if (X,Z) is
a SET SPLITTING yes-instance. The key observation is that,
on A, x separates the sets X1 and X2.

It is important to note that – in contrast to the NP-hardness
result in Theorem 6 – in this proof we make use of u-valleys
instead of v-valleys. This means in particular that this hard-
ness result does not hold for weak orders, which cannot con-
tain u-valleys. This is not incidental: in the next section, we
present a polynomial-time algorithm for weak orders.
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Figure 3: Graphical representation of the conditions testing
whether ci can be placed on the right-hand side ((R1), (R2))
or on the left-hand side ((L1), (L2))

5 The Guided Algorithm

In this section, we present a polynomial time algorithm for
profiles of weak orders. This algorithm requires that the pro-
file contains at least one total order to guide the placement
of candidates on the axis. We call this vote the guiding vote.

Theorem 9. If the profile contains a total order, the WEAK

ORDER SINGLE-PEAKED CONSISTENCY problem can be
solved in O(m · n) time.

We will refer to Algorithm 1, which Theorem 9 is based
on, as the Guided Algorithm. Without loss of generality, we
assume that the guiding vote is 〈cm ≻ cm−1 ≻ · · · ≻ c1〉,
i.e., we number the candidates based on the guiding vote.

The algorithm has a simple structure: The lowest ranked
candidate in the guiding vote, c1, is placed on the rightmost
position of the axis (The leftmost position would work as
well.) Starting with the second lowest ranked candidate, c2,
in the guiding vote, the candidates are successively placed
on the axis – either at the leftmost or rightmost still available
position. The lists AL and AR correspond to the left-hand
and right-hand side of the axis. For each candidate, we test
whether it can be placed on the right-hand side or left-hand
side without creating a valley. If only one of these options is
viable, the candidate is placed accordingly. If both left and
right are possible, we place the candidate arbitrarily right.
If neither is possible, the preference profile is not single-
peaked.

Testing whether a vote Vk imposes restrictions on the
placement of a candidate is achieved by four conditions.
These conditions distinguish four categories of candidates:
candidates in AR, candidates in AL, candidates that have
not yet been placed (C>i = {ci+1, . . . , cm}) and the candi-
date that is currently under consideration (ci). We are only
checking for valleys that include ci. This gives rise to these
four conditions: (R1) and (R2) test whether placing ci on
the right-hand side of the already placed candidates leads to
valleys, (L1) and (L2) do the same for the left-hand side.
Refer to Figure 3 for a graphical representation. Since we
only consider weak orders, we do not have to consider every
candidate triple possibly fulfilling these conditions but have
to check only maximal or minimal candidates. More specif-
ically, checking whether there is a candidate c ∈ AL and
c′ ∈ C>i with c ≻ c′ is equivalent to whether any maximal
element in AL is preferred to some minimal element in C>i.
Let mink(X) denote a function that picks one element in X

that is minimal with respect to ≻k. The function maxk(X)
is defined analogously.

ci ≻k mink(C>i) and maxk(AL) ≻k mink(C>i) (R1)

maxk(C>i) ≻k ci and maxk(AR) ≻k ci (R2)

ci ≻k mink(C>i) and maxk(AR) ≻k mink(C>i) (L1)

maxk(C>i) ≻k ci and maxk(AL) ≻k ci (L2)

Using these four definitions, we can give a succinct de-
scription of the algorithm (Algorithm 1).

Algorithm 1: The Guided Algorithm

1 AL ← 〈〉; AR ← 〈c1〉
2 for i← 2 . . .m do

3 right← true; left← true

4 for k ← 2 . . . n do

5 if Condition (R1) or (R2) holds then

6 right← false

7 if Condition (L1) or (L2) holds then

8 left← false

9 if right = true then

10 AR ← 〈ci < AR〉
11 else

12 if left = true then

13 AL ← 〈AL < ci〉
14 else

15 return not single peaked

16 return AL < AR

Theorem 9 claims that the Guided Algorithm requires
O(m · n) time. This is only possible if the conditions can
be checked in constant time. Thus, the minima and maxima
have to be computable in constant time. For maxk(AL) and
maxk(AR) this is easily possible by storing and updating
these two values. If ci is placed left, we update maxk(AL)
in case ci is the new maximum (with respect to ≻k); if ci is
placed right, we proceed analogously maxk(AR). For com-
puting a minimal value of C>i, observe that the set C>i be-
comes smaller with increasing i. Thus, a minimal value of
C>i might disappear at some point and a new (larger) value
has to be chosen. The new minimum is the smallest element
(with respect to ≻k) in C>i that is at least as large as the
old minimum. If we maintain pointers to the minimum ele-
ments, the amortized cost of this update procedure is O(1).
A maximal value of C>i can be found analogously.

We conclude this section with a lemma showing that we
can weaken the total order requirement: it suffices that the
guiding vote is given implicitly in the profile.

Lemma 10. Let C = {c1, c2, . . . , cm} and T =
〈c1 < c2 < . . . < cm〉 be a total order on C with the follow-
ing property: for each i ∈ {1, . . . ,m}, it holds that there
is a vote V ∈ P such that ci is the unique last ranked can-
didate in V [{ci, ci+1, . . . , cm}]. If P is a single-peaked pro-
file, thenP is also single-peaked if the total order T is added
to it as a vote.

It is computationally easy to find such an implicitely given
guiding order: Look for a vote with a unique last ranked can-



didate. This candidate is ranked last in the guiding vote. Re-
move this candidate from the profile and repeat this step to
obtain the second-to-last element in the guiding order, etc.

6 A 2-SAT Based Algorithm

Theorem 8 and Theorem 9 leave open the case of profiles
of local weak orders which contain at least one total order.
Here, we show that this case is polynomial time solvable as
well.

Theorem 11. If the profile contains a total order, the LOCAL

WEAK ORDER SINGLE-PEAKED CONSISTENCY problem
can be solved in O(n ·m3) time.

We encode the LOCAL WEAK ORDER SINGLE-PEAKED

CONSISTENCY instance in a 2-SAT instance. The 2-SAT

problem asks whether a Boolean formula of the form (a ∨
b) ∧ (¬a ∧ c) ∧ . . . (each clause has size two) is satisfiable.
Solving 2-SAT requires only linear time (Aspvall, Plass, and
Tarjan 1979). The boolean variables in our instance corre-
sponds to pairs of candidates, i.e., for each a, b ∈ C we have
a variable ab. The intended meaning of these variables is
that ab = true if and only if a is left of b on the axis. Now,
for each vote V and triple a, b, c ∈ C, if a ≻ b and c ≻ b
(a, b, c form a v-valley), then we add the clauses (ba ∨ cb)
and (ab ∨ bc) to the 2-SAT instance. These clauses corre-
spond the requirement that b must be placed between a and
c. Finally, we add for each pair of variables a, b the clauses
(ab ∨ ba) and (¬ab ∨ ¬ba) (corresponding to the exclusive
or operator). Solving the 2-SAT instance either yields the
information that the instance is not satisfiable or a true/false
assignment to the variables. In the first case, the profile is
not single-peaked. In the second case, we obtain a relation
A = {(a, b) : ab = true} ∪ {(a, a) : a ∈ C} which is
our wanted axis. Indeed, one can show that A is a total or-
der and the profile is single-peaked with respect to A. We
remark that the transitivity of A is due to the guiding vote.
Since the instance contains at most O(n · m3) clauses, we
obtain the stated runtime.

Both the 2-SAT based algorithm and the Guided Algo-
rithm rely on the guiding vote. In the next section, we will
consider profiles that do not have a guiding vote.

7 The Unguided Algorithm

Here, we present a polynomial-time algorithm (Algorithm 2)
that, in contrast to the Guided Algorithm, is not dependent
on a guiding vote. We therefore refer to it as the Unguided
Algorithm. The Unguided Algorithm is applicable to top
orders. We assume the input preference profile to be con-
nected: Let us consider the ranked candidates in a top or-
der to be a hyperedge of a hypergraph with candidates as
vertices. A profile of top orders is called connected if this
graph has only one connected component. This assumption
does not limit the applicability: if two or more connected
components exist in this graph, we can use the algorithm
for each component (i.e., its respective candidates and votes)
and concatenate the resulting axes in arbitrary order.

The algorithm works as follows: First, we choose a can-
didate cstart which is going to be the leftmost candidate on
the axis A. Since we have no guiding vote, each candidate

Algorithm 2: The Unguided Algorithm

1 foreach cstart ∈ C do

2 A← 〈cstart〉
3 for i← 1 . . .m do

4 foreach V ∈ VotesWithPeak(ai) do

5 if A⊕ V = incompatible then

6 Continue with next cstart ∈ C in

Line 1.

7 else A← A⊕ V

8 if |A| = i and i < m then

9 V ←IntersectingVote(A)
10 if ai /∈ V then

11 Continue with next cstart ∈ C in

Line 1.
12 Let x be new candidate not in C.

13 C ′ ← {c ∈ V | c ≻ ai} ∪ {ai, x}
14 S ← ∅
15 for k ← 1 . . . n do

16 V ′
k ← RepTop(Vk, C \ (A ∪ C ′), x)

17 S ← S ∪ {V ′
k[C

′]}

18 A′ ←GuidedSP(S, V [C ′], ai, x)
19 if A′ =not single peaked then

20 Continue with next cstart ∈ C in

Line 1.

21 else A← A < A′[C ′ \ {x}]

22 return A

23 return not single peaked

might be placed at the leftmost position. Hence we loop over
all candidates (Line 1). The corresponding axis under con-
struction is A = 〈cstart〉. We now aim to complete this axis
by adding candidates to the right in such a way that all votes
are single-peaked with respect to this axis. To this end we
employ the loop in Line 3. In this loop (variable i) we in-
fer from the already placed candidate ai (the i-th candidate
on A from left) the candidate ai+1 (or even more candidates
further to the right).

The Lines 4 to 7 are based on the following observation:
Let us assume that at a certain point A = 〈c1 < c2 < c3〉
and V = 〈c3 ≻ c2 ≻ c4 ≻ c5 ≻ •〉 ∈ P . Since c3, the peak
of V , is already contained in A, there is only one compat-
ible extension of A: 〈c1 < c2 < c3 < c4 < c5〉. We formal-
ize this extension operation with the ⊕ operator:

Definition 12. Let A be an incomplete axis, V a top order
and let V [C \ A] =

〈

c′1 ≻ c′2 ≻ . . . ≻ c′j
〉

. We define A ⊕

V =
〈

A < c′1 < c′2 < . . . < c′j
〉

if V is single-peaked with
respect to this axis and A⊕ V = incompatible otherwise.

The loop in Line 4 enumerates all votes with peak ai
(VotesWithPeak(ai)). Let V ∈ VotesWithPeak(ai).
If A ⊕ V = incompatible then A cannot be extended to
a complete (single-peaked) axis and we consider the next
cstart ∈ C in Line 1. Otherwise, we obtain a new incomplete
axis A← A⊕ V .

It might be the case that the candidate ai+1 has not yet



been determined after these steps. The Lines 8 to 21 deal
with this case. Since the election is connected there has to
be at least one vote that contains both a candidate on A
and a candidate that has not been placed yet. The proce-
dure IntersectingVote in Line 9 returns such a vote
V with A ∩ V 6= ∅ and V \ A 6= ∅. For such a vote V
it holds that peak(V ) /∈ A. If peak(V ) were contained in
A, then V would have been already considered in the first
part of the algorithm (Lines 4 to 7). If V does not contain ai
(and thus ai is ranked last in V ), A cannot be extended to a
single-peaked axis.

Now that we have such an intersecting vote V with ai ∈
V , we employ the Guided Algorithm to find a further ex-
tension of A. The main idea is to use V as a guiding vote
and find an axis for the candidates in {c ∈ V | c ≻ ai}. In
principle, this axis can be found independently of the exist-
ing axis A. However, the leftmost and rightmost candidates
have to be chosen with regard to “external” considerations:
The leftmost candidate has to be ai, otherwise A and the
newly obtain partial axis A′ could not be merged. For the
rightmost candidate, we have to consider votes with candi-
dates that are not being placed on the axis in this step. The
following example illustrates the issue.

Example. Let A = 〈c1〉, V1 = 〈c2 ≻ c3 ≻ c1 ≻ •〉 and
V2 = 〈c3 ≻ c4 ≻ •〉. The vote V1 intersects A and hence
C ′ = {c1, c2, c3}. We employ the Guided Algorithm and
might obtain A′ = 〈c1 < c3 < c2〉.

1 Now observe that A ⊕
A′ = A′ can no longer be extended in a way that it is single-
peaked for V2. This would have been possible if c3 had been
chosen as the rightmost candidate in A′.

As we see from this example, we sometimes have to
“force” the rightmost candidate in A′. We do this by adding
an additional candidate x to every vote (Line 15 to 17). It
is placed at the position of the top ranked candidate in each
vote that is not contained in A ∪ C ′. This is done by the
RepTop function: RepTop(V,D, x) replaces the one can-
didate in vote V that is the top ranked of the candidates in D
with candidate x. By forcing this element x to be the right-
most candidate, we ensure that A′ is chosen under consider-
ation of all votes with ranked candidates not in C ′.

Example (continued). We apply RepTop to the votes V1

and V2 with C ′ = {c1, c2, c3, x}. The vote V ′
1 [C

′] =
〈c2 ≻ c3 ≻ c1 ≻ x〉 and V ′

2 [C
′] = 〈c3 ≻ x ≻ •〉. Now, we

can only obtain the axis 〈c1 < c2 < c3 < x〉.

The set S, as computed in Lines 14 to 17, is the election P
restricted to C ′ together with the additional candidate x. We
now employ GuidedSP(S, V [C ′], A′, ai, x) which means
that we employ the Guided Algorithm for the profile S and
guiding vote V [C ′]. Furthermore, we require that the left-
most candidate on the axis is ai and the rightmost is x. The
function GuidedSP either returns not single peaked

or an axis A′. If it returns not single peaked, the next
cstart ∈ C is considered (Line 1). Otherwise, we continue
with the extended axis A← A⊕A′[C ′ \ {x}].

1Whether we obtain this axis or 〈c1 < c2 < c3〉 depends on
whether the algorithm prefers placing candidates to the left or to
the right if both choices are possible.

X general guiding vote

PARTIAL NP-c (Cor 7) NP-c (Thm 8)
LOCAL WEAK NP-c (Thm 6) poly (Thm 11)

WEAK open poly (Thm 9)
TOP poly (Thm 13) poly (Thm 9)

TOTAL poly† poly†

Table 1: Overview of the complexity results for X ORDER

SINGLE-PEAKED CONSISTENCY

Theorem 13. The TOP ORDER SINGLE-PEAKED CONSIS-
TENCY problem can be solved in O(m2 · n) time.

8 Conclusions

In this paper we have analyzed the PARTIAL ORDER

SINGLE-PEAKED CONSISTENCY problem (see Table 1) for
different types of order and with/without the assumption of
having a guiding vote. Such a vote is likely to exist for large
preference profiles. In the case that top orders are elicited
however, a guiding vote might not exist. Here the Unguided
Algorithm is applicable. We therefore believe to have suc-
ceeded in covering a large spectrum of possible application
scenarios with our algorithms.

We would like to mention one particular application of the
Unguided Algorithm concerning single-peaked scoring pro-
tocols. Scoring protocols are specified by a scoring vector
(α1, . . . , αm). A vote V = 〈c1, . . . , cm〉 gives α1 points to
c1, α2 points to c2, etc. The winner candidate is determined
by summing over all votes. Often scoring vectors of the type
(α1, . . . , αk, 0, . . . , 0) with α1 > . . . > αk > 0 are con-
sidered. For such scoring rules, top orders (with k ranked
candidates) constitute full information. It is therefore debat-
able whether the input may be considered to be given as a
profile of total orders. This is of relevance for single-peaked
profiles. For example, Brandt et al. (2010) study the con-
structive coalition weighted manipulation problem for scor-
ing protocols in single-peaked elections. The authors con-
sider the axis to be part of the input (for good reasons as
explained in their paper). The computation of such an axis
with existing algorithms is possible only if preferences are
specified by total orders and thus contain problem-irrelevant
information. If only relevant information is given, i.e., the
input consists of top orders, an algorithm such as the Un-
guided Algorithm is required.

The most important future research direction is to in-
vestigate the computational advantages arising from incom-
plete single-peaked preferences: does such structure de-
crease the computational complexity of voting problems? In
addition, it is desirable to extend our algorithms to nearly
single-peaked domains (Faliszewski, Hemaspaandra, and
Hemaspaandra 2011; Cornaz, Galand, and Spanjaard 2012;
Erdélyi, Lackner, and Pfandler 2013; Elkind, Faliszewski,
and Slinko 2012; Bredereck, Chen, and Woeginger 2013;
Sui, Nienaber, and Boutilier 2013), since notions of nearly
single-peakedness are more robust and applicable in real-life
settings.

†This is a result by Bartholdi and Trick (1986).
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