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Abstract

Generalized CP-nets (GCP-nets) allow a succinct
representation of preferences over multi-attribute
domains. As a consequence of their succinct rep-
resentation, many GCP-net related tasks are com-
putationally hard. Even finding the more prefer-
able of two outcomes is PSPACE-complete. In this
work, we employ the framework of parameterized
complexity to achieve two goals: First, we want to
gain a deeper understanding of the complexity of
GCP-nets. Second, we search for efficient fixed-
parameter tractable algorithms.

1 Introduction
Preferences over a multi-attribute domain arise in many fields
in AI. In a multi-attribute domain, the explicit representa-
tion of a preference ordering is exponential in the number
of attributes. Hence, several formalisms to succinctly rep-
resent preference orderings have been proposed. CP-nets
and in particular generalized CP-nets (GCP-nets, for short)
[Boutilier et al., 1999; 2004a; 2004b; Domshlak et al., 2003;
Goldsmith et al., 2008] are among the most popular ones.

The succinctness of GCP-nets comes with a price. Gold-
smith et al. [2008] have shown that most of the fundamental
tasks concerning GCP-nets are computationally hard, namely
PSPACE-complete. One of these computationally hard but
fundamental tasks is the Dominance problem: Given a GCP-
net and two combinations of attribute values (referred to as
“outcomes”), we want to check if one of the outcomes is pre-
ferred over the other. Another example for a hard problem
is the Consistency problem, which asks whether there is an
outcome that is preferred to itself. The corresponding reduc-
tions in Goldsmith et al. [2008] are ultimately shown via the
close connection between GCP-nets and STRIPS planning,
for which the PSPACE-completeness in the unrestricted case
was shown by Bylander [1994].

Recently, several attempts have been made to identify spe-
cial cases of planning which have lower complexity or are
even tractable. To this end, the tools of parameterized com-
plexity have been applied. In a parameterized complexity
analysis, the runtime of an algorithm is studied w.r.t. a pa-
rameter k ∈ N in addition to the input size n. The basic idea

is to find a parameter that describes the structure of the in-
stance such that the combinatorial explosion can be confined
to this parameter. The most favourable class is FPT (fixed-
parameter tractable) which contains problems that can be de-
cided by an algorithm running in f(k) · nO(1) time, where f
is a computable function. Obviously, an FPT result imme-
diately yields a polynomial time algorithm for the problem
if the parameter is bounded by a constant. Bäckström et al.
[2012] proved fixed-parameter tractability of SAS+ planning
(a generalization of STRIPS planning) when considering the
plan length as parameter provided that every variable can be
set to a particular value by at most one action. Recently, Kro-
negger et al. [2013] have considered combinations of the plan
length with many further parameters and have, for instance,
identified FPT of STRIPS planning w.r.t. the combined pa-
rameter “plan length” and “maximum number of occurrences
of each variable”.

Due to the close relation of GCP-nets and planning, these
results let hope for similar results for GCP-net problems. This
paper explores the possibilities of a parameterized complex-
ity analysis of GCP-nets. Our aim is to establish FPT results
and thus obtain efficient algorithms for handling GCP-nets.
A parameterized complexity analysis may of course also re-
veal that some parameter (or combination of parameters) does
not have a significant impact on the complexity. A problem
is called paraNP-hard if restricting a parameter to a constant
still leaves the problem (at least) NP-hard. In parameterized
complexity, the area between the most favorable case of FPT
and the negative case of paraNP-hardness has a rich structure
in that it contains an infinite hierarchy of complexity classes
W[1], W[2], etc. It is commonly assumed that FPT 6= W[1].
Hence showing hardness for W[1] (or higher classes) presum-
ably rules out the existence of an FPT-algorithm. Indeed,
for W[t]-complete problems, only algorithms with runtime
O(nf(k)) are known, i.e., the parameter k occurs in the expo-
nent of the input size n. This is worse than the upper bound
f(k)·nO(1) for FPT, but it still allows us to identify a PTIME-
solvable fragment of the problem in case the parameter value
is bounded from above by some constant.

In the parameterized complexity analysis of planning, the
plan length has played a major role. Translated from the
world of planning to the setting of GCP-nets, the plan length
corresponds to the number of improving flips (i.e., invoca-
tions of conditional preference rules) required to establish



a preference ordering between two outcomes. In both set-
tings the corresponding decision problem would ask whether
a short plan / a short sequence of improving flips exists. The
impact of this parameter is however different: In case of plan-
ning, a no-answer to this question would give the relevant
information that no short plan exists. For some real-life prob-
lems, only short plans are feasible. In case of GCP-nets, it
is not clear at all how to make use of the information that
a short sequence of improving flips does not exist. The two
outcomes might still be comparable (but require a longer se-
quence of flips).

Due to these observations, we consider the maximum dis-
tance between any two outcomes. If no sequence of improv-
ing flips of that length can be found, then the two outcomes
are incomparable. Thus, this diameter of a GCP-net seems
to be a useful and natural structural parameter. In our paper
we investigate two fundamental computational problems: the
first one is concerned with computing the diameter and the
second one is concerned with using a bound on the diameter
to guide the check for dominance between two outcomes.
Structure of the paper and main results. In Section 3 we
analyse the complexity of computing the diameter of a given
GCP-net. For the general case, we establish the PSPACE-
completeness of this problem. In the course of this complex-
ity analysis, we identify the unbounded size of the diameter
as the main source of complexity. We thus carry out exper-
imental results to get an idea how likely an arbitrarily (i.e.,
exponentially) big diameter is. It turns out that for randomly
generated GCP-nets, the diameter is typically in the order of
magnitude of the number of variables (i.e., attributes) of a
GCP-net. We thus define a variant of the Diameter problem,
where we ask if the diameter of a given GCP-net is below
some value k which itself is polynomially bounded w.r.t. to
the number of variables. We show that in this case the com-
plexity drops to Π2P -completeness. Finally, we analyse the
Diameter problem from a parameterized complexity point of
view by considering the diameter as parameter. It turns out
that the problem in the class XP (and hence admits an efficient
computation for small diameters). However, by showing also
co-W[1]-hardness, we rule out fixed-parameter tractability of
this problem.

In Section 4, we study the parameterized complexity of the
Dominance problem of GCP-nets for various combinations
of parameters including the diameter k. Further parameters
are the number of variables |V |, number of rules |R|, maxi-
mum size of the conditions c, and the maximum number of
occurrences of effects e. We obtain three kinds of results: For
some parameter combinations (such as k and c), the Dom-
inance problem is in FPT. For other parametrizations (such
as k alone), we establish W[1]-completeness. Finally, we
also identify parameter combinations (such as e and c), for
which the Dominance problem is paraNP-hard. On the one
hand, this parameterized complexity analysis gives us a bet-
ter understanding of the actual source of complexity of the
Dominance problem. On the other hand, it also underlines
the importance of considering combinations of parameters,
since there are often cases where single parameters do not
help much but only their combination yields fixed-parameter
tractability. This applies, for example, to the parameters k

and c, where k alone yields fixed-parameter intractability and
c alone even yields paraNP-hardness. Only the combination
of these two yields an FPT result.

Some proofs had to be omitted due to space constraints.

2 Preliminaries
In this paper we focus on the exponential runtime of algo-
rithms and thus use the O∗(·) notation for runtime bounds.
This notation is defined in the same way as O(·) but ignores
polynomial factors. Furthermore, for n,m ∈ N with n ≤ m
we use [n,m] to denote the set {n, n + 1, . . . ,m} and define
[n] := [1, n]. We write var (ϕ) to denote the set of variables
occurring in a propositional formula ϕ. A literal l is a vari-
able or its negation. The dual literal l of l is the variable x if
l is ¬x and is ¬x if l is x.

GCP-nets. A generalized conditional preference network (or
GCP-net) is a pair C = (V,R), where V is a set of variables
and R is a set of conditional preference rules. We restrict
our attention to propositional variables, i.e., variables with a
binary domain. An outcome is a mapping o : V → {0, 1}.
A conditional preference rule (or rule) is an expression of the
form p : l > l, where p is a conjunction of literals over V and
l is a literal of a variable x /∈ var (p). We call the first part (p)
the condition and the second part (l > l) the effect.

The conditional preference rule p : l > l determines that
whenever p holds, l is preferred to l ceteris paribus, i. e., an
outcome o1 that satisfies p and l is strictly more preferred to
the outcome o2 which only differs from o1 in that it satisfies
l. In this situation we say there is an improving flip from o1 to
o2 sanctioned by p : l > l. Let o and o′ be outcomes. We use
the binary relation � to express with o′ � o that o′ is more
preferred than o. This is the case if there is a sequence of out-
comes (o, o1, o2, . . . , ok, o

′) such that there is an improving
flip from o to o1, o1 to o2, etc. In case o′ � o holds, we say
that o′ dominates o.

The relation � is transitive. It thus defines a graph with
outcomes as vertices – the preference graph. The preference
graph of a GCP-net C is a directed graph D = (N,A) whose
vertices are the outcomes of C. There is an arc (o1, o2) ∈ A
whenever there is an improving flip from o1 to o2.

Parameterized Complexity. Parameterized algorithmics
(cf. [Downey and Fellows, 1999; Flum and Grohe, 2006;
Niedermeier, 2006]) is a promising approach to obtain ef-
ficient algorithms for NP-hard problems. An algorithm is
fixed-parameter tractable (fpt) if it runs in f(k) · nO(1) time,
where k ∈ N and f is a computable function. If a combina-
tion of parameters k1, . . . , kl is considered, we identify this
parameter with a single parameter k = k1 + k2 + · · · + kl.
A parameterized reduction (or fpt-reduction) is a many-to-
one reduction from one parameterized problem (with param-
eter k) to another parameterized problem (parameter k′). It
is required that this reduction can be computed by an ftp-
algorithm w.r.t. parameter k. In addition, the parameter k′
of the target instance has to satisfy the condition k′ ≤ g(k),
where g is a computable function depending only on the pa-
rameter k of the source instance.



We now turn to classes capturing fixed-parameter in-
tractability. The first class is W[1], which can be defined
as the class containing all problems that are fpt-reducible to
the CLIQUE problem when parameterized by the size of the
clique. It is commonly believed that FPT 6= W[1] and hence
W[1]-hardness rules out the existence of an fpt-algorithm.
The class paraNP [Flum and Grohe, 2003] is defined as
the class of problems that are solvable by a nondetermin-
istic Turing-machine in fpt-time. A parameterized problem
is paraNP-hard if it remains NP-hard when the parameter
is fixed to some constant. Finally, the class XP contains
all parameterized problems solvable in time O(nf(k)) for
some computable function f . The following relations hold:
FPT ⊆ W[1] ⊆ XP and FPT ⊆ W[1] ⊆ paraNP.

3 Diameter
In this section, we study the complexity of determining the
diameter of a GCP-net. Formally, the diameter and the cor-
responding decision problem are defined as follows. Let
D = (N,A) be the preference graph, let x, y ∈ N be
vertices, and let dist(x, y) define the distance from x to y
(and 0 if no path exists). The diameter is then defined as
maxx,y∈N (dist(x, y)). In the GCP-DIAMETER problem, we
want to check if the diameter of a given GCP-net is below
some given bound:

GCP-DIAMETER
Instance: A GCP-net C and k ∈ N.
Question: Does the preference graph of C have diame-

ter ≤ k?

Many fundamental decision problems in the context of GCP-
nets are PSPACE-complete [Goldsmith et al., 2008]. Also
more generally, many graph problems that are polynomial
time solvable are PSPACE-complete if the graph is suc-
cinctly represented but has an exponential size [Balcázar et
al., 1992]. Below, we show that this is also the case for the
Diameter problem in GCP-nets.

Theorem 1. The GCP-DIAMETER problem is PSPACE-
complete.

Proof (sketch). The PSPACE-membership proof is based on
ideas of Goldsmith et al. [2008]: Given a GCP-net C, we test
for every pair (o1, o2) of outcomes that there is a path from o1
to o2 of length ≤ k. This is done in NPSPACE (by guessing
a path) and hence in PSPACE (by PSPACE = NPSPACE).

For the PSPACE-hardness, we first observe that certain ba-
sic “procedures” can be simulated by GCP-nets. In particular,
we can simulate a counter up to some number L = 2n − 1
with n propositional variables c1, . . . , cn together with an
appropriate collection of auxiliary variables. The PSPACE-
hardness proof proceeds by a reduction from an arbitrary
problem P in PSPACE to the GCP-DIAMETER problem. Let
P be decided by a Turing machine TM in polynomial space
and let w be an arbitrary instance of P . We construct an in-
stance of the GCP-DIAMETER problem by a GCP-net C with
three groups of conditional preference rules. The first group
implements a counter for some “sufficiently large” L. The
second group simulates the computation of Turing machine
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Figure 1: The average diameter, the maximum diameter and
the average distance of randomly generated GCP-nets.

TM on input w. The third group again implements a counter
to L. A transition from outcomes produced by a flip accord-
ing to the first group of rules to outcomes produced by the
second group is only possible if the variables in C represent
the initial configuration of the Turing machine on input w.
The transition from the second group of rules to the third one
is only possible if the variables in C represent an accepting
configuration of TM . As upper bound k on the diameter we
choose 2 ·K, where K denotes the number of flips needed to
count from 0 to L. For sufficiently large L, this upper bound
can only be exceeded if the rules in the first and in the third
group indeed do the counting. This in turn is only possible if
the simulation of the Turing machine by the second group of
rules reaches the accept state.

The high complexity of the GCP-DIAMETER problem is
due to the fact that the bound k of an instance of GCP-
DIAMETER can be arbitrarily big; more specifically, it can
be exponentially big w.r.t. the number of variables in the
GCP-net. But how likely is it that a GCP-net has an expo-
nential diameter? We have studied this question experimen-
tally. For this, we randomly generated conditional preference
rules. Each rule was obtained by first generating an integer
m ∈ [|V |] uniformly at random and then choosing a pref-
erence rule of size m uniformly at random. We have inves-
tigated the relationship between the number of conditional
preferences rules and the diameter. For each number of rules
we have generated 100 GCP-nets randomly and calculated the
diameter and the average distance between any two vertices
in the corresponding preference graph. Figure 1 shows the av-
erage values of the diameter, the maximum diameter and the
average distance in GCP-nets with 12 variables. The overall
picture is the same for different numbers of variables. From
the empirical study we observe that the diameter is always in
the order of the number of variables. We thus define the fol-
lowing variant of the GCP-DIAMETER problem, where k is
bounded by some polynomial poly(·).



GCP-DIAMETER[poly ]
Instance: A GCP-net C over n variables and k ∈ N

with 0 ≤ k ≤ poly(n).
Question: Does the preference graph of C have diame-

ter ≤ k?

The following theorem shows that the problem is still in-
tractable but the complexity has reduced.

Theorem 2. Let poly(·) be an arbitrary polynomial. The
GCP-DIAMETER[poly ] problem is Π2P -complete.

Proof (sketch). We establish this result by showing Σ2P -
completeness for the co-problem of GCP-DIAMETER[poly ],
asking whether the diameter is larger than k. This is shown
by a reduction from the canonical Σ2P -complete problem ∃-
QSAT2. We have to omit the construction due to space con-
straints. The membership can be seen by the following guess-
and-check algorithm: Guess a pair of outcomes o1 and o2 and
check that no path of length ≤ k from o1 to o2 exists. The
check is in coNP since checking whether a path of length≤ k
exists from o1 to o2 is feasible in NP (since k is polynomially
bounded).

Finally, in our complexity analysis of the GCP-DIAMETER
problem we also consider the parameterized version of this
problem. Again, we get an intractability result – to be precise,
fixed-parameter intractability.

Theorem 3. The GCP-DIAMETER problem parameterized
by the size k of the diameter is co-W[1]-hard and in XP.

Proof (sketch). We reduce from CLIQUE parameterized by
the size of the clique s. Let G = (N,E) be the given graph
in which we want to find a clique of size s. The GCP-net con-
tains two variables per vertex: V = N ∪ {v+ | v ∈ N}. The
preference rules of the GCP-net also correspond to vertices.
The rules of the GCP-net are given by:

v ∧
∧

w 6=v∈N∧¬E(v,w)

¬w : v+ > ¬v+ for v ∈ N

Observe that all rules imply that a variable set to 1 is prefer-
able to a variable set to 0. Hence in a path in the correspond-
ing preference graph every rule can be applied at most once.
Consequently, we are looking for s rules that are compatible,
i.e., they can be applied one after another. Note that the in-
vocation order of these rules does not effect their compatibil-
ity since the variables occurring in the conditions are distinct
from those occurring in the effects. The GCP-DIAMETER
problem is equivalent to asking whether there does not exist a
clique of size s + 1. The following claim proves the correct-
ness of the reduction: The graph G has a size s clique if and
only if there are s distinct, compatible rules in the GCP-net.

The XP membership of GCP-DIAMETER is witnessed by
the following algorithm: Loop over all |R|k+1 sequences of
rules of length k + 1. For each of these sequences find a
compatible starting outcome o. This outcome is defined as
follows. For each x ∈ V find the first rule it occurs in. If
it occurs in the condition, set it in o according to this con-
dition. If it occurs in the effect, set it so that this effect can
be executed, i.e., to the not preferred domain element. If the

k diameter of the preference graph
c maximum size of condition
|R| number of rules
|V | number of variables
e maximum effect occurrences

Table 1: List of considered parameters.

variable does not occur in any of the k + 1 rules, we ignore it
in the following consideration.

Now, that we have our (partial) outcome o, we can check
whether the chosen rules yield a valid improving sequence.
For this to hold, the rules have to be successively applied.
In case this is possible, we obtain a sequence of outcomes.
Now, we have to verify that this improving sequence does not
contain a cycle. If we have obtained that the sequence has
length k + 1 and is cycle-free, we know that the GCP-net has
a diameter > k. If for every choice of rules the rules do not
yield a cycle-free sequence of length k + 1, the GCP-net has
diameter ≤ k.

4 On the Tractability of Dominance
Given a GCP-net and two outcomes it is a natural question to
ask which outcome is “better”, i.e., dominates the other.

GCP-DOMINANCE
Instance: A GCP-net C having diameter at most k, two

outcomes o1, o2, and the integer k.
Question: Does o2 � o1 hold in C?

In this section we will explore the frontiers of parameterized
tractability of the GCP-DOMINANCE problem w.r.t. the pa-
rameters listed in Table 1. This will shed some light on how
different factors measured in terms of the parameters influ-
ence the complexity of GCP-DOMINANCE.

The GCP-DOMINANCE problem can be seen as a plan-
ning problem. It corresponds to propositional planning with
effects of size 1 and a single, fully specified goal. Conse-
quently, all results concerning GCP-DOMINANCE also apply
to this planning problem.

We now describe briefly the parameters considered. In
the previous section we have discussed how hard it is to
compute the diameter of the preference graph. This can be
seen as the computation phase of the parameter value. In
this section we will turn to the evaluation phase and re-
quire that the GCP-net has diameter k and that k is given
in the input. The parameters |R| and |V | capture the car-
dinality of the rules and variables, respectively. The pa-
rameter c measures the maximum size of the condition of
a rule. Finally, the parameter e counts the maximum num-
ber a variable occurs in the effects of rules. More formally,
e := maxv∈V

∣∣{(p : l > l) ∈ R | l = v ∨ l = v}
∣∣.

We start with first proving parameterized intractability for
the parameter k and the parameters c, e and then show four
FPT results.

Theorem 4. The GCP-DOMINANCE problem parameterized
by k is W[1]-complete.



Proof. We show this result by reduction from CLIQUE, pa-
rameterized by the size of the clique s. Let (N,E) be a given
graph with N = {v1, . . . , vn}. Furthermore, let l be the num-
ber of edges in this clique, i.e., l := s(s−1)

2 . We construct a
GCP-net C = (V,R) in the following way. The variables are
V := V ′ ∪ E′ ∪H ∪ T with V ′ := {x1, . . . , xn} represent-
ing the vertices, E′ := {eij | 1 ≤ i < j ≤ n} represent-
ing the edges, and H := {h1, . . . , hs, g, g1, . . . , gl} ∪ {gijm |
1 ≤ i < j ≤ n,m ∈ [l]} containing auxiliary variables.
The set T contains additional auxiliary variables which will
be described later. We will use special rules of the form
p :! l1 > l1, l2 > l2. Such a rule expresses that an outcome o2
for which p∧l1∧l2 holds is preferred to an outcome o1 that is
identical to o2 except that l1 ∧ l2 holds. We will show later in
the proof how such preference rules can be constructed with
GCP-nets. The conditional preference rules R are as follows:

(R1) ¬g :! xi > ¬xi, hj > ¬hj for i ∈ [n], j ∈ [s]

(R2) ¬g ∧ eij ∧ xi ∧ xj ∧
∧

m 6=m′∈[l]

¬gijm′ ∧
∧

i′<j′∈[n]\{i,j}

¬gi
′j′

m :

: gijm > ¬gijm for i, j ∈ [n],m ∈ [l]

(R3) ¬g ∧ gijm : gm > ¬gm for i, j ∈ [n],m ∈ [l]

(R4) g1 ∧ · · · ∧ gl : g > ¬g
(R5) g :! ¬x > x,¬hj > hj for x ∈ V ′, j ∈ [s]

(R6) g :! ¬gijm > gijm,¬gm > gm for i, j ∈ [n],m ∈ [l]

The instance of the dominance problem is given by C, the
outcomes o1, o2 and an integer k. In the outcome o1 we set
eij ∈ E′ with {vi, vj} ∈ E to 1 and all other variables to 0.
The outcome o2 is identical to o1 except that g is set to 1.

For the correctness we consider each type of rules in R. In
a first step, the rules of type (R1) are used to select vertices
into the clique. For each vertex added one of the hj variables
is set to 1 as well. Since these rules are special rules, only s
of them can be executed. The rules of type (R2) allow to set
for each m ∈ [l] exactly one variable gijm to 1. The intended
meaning is that the m-th edge (of all l many edges) in the
clique is covered by vi and vj . Subsequently, the rules of
type (R3) are used to set the variable gm to 1 whenever gijm
is set to 1 for some i, j ∈ [n]. In case all gi, with i ∈ [l],
are set to 1 the rule of type (R4) is used to set g to 1. This
means that all l edges of a clique of size s are covered by some
vertices and hence the variables in V ′ set to 1 indeed represent
a clique. It remains to “clean” the variables by setting them
back to 0 such that the outcome o2 is reached. This is done
by using the rules of type R5 and R6. The rules of type (R5)
allow to set at most s of the variables in V ′ back to 0. This is
because these rules are special rules, which set also a hj to 0.
Similarly, the rules of type (R6) allow to set for each gm one
of the corresponding gijm to 0.

We will now show how to implement rules of the form p :!

l1 > l1, l2 > l2 in a regular GCP-net. Let t be a variable in T
that is introduced for this rule. For each of these special rules
we require four standard rules:

p ∧ l1 ∧ l2 : t > ¬t t : l2 > l2

t : l1 > l1 l1 ∧ l2 : ¬t > t

In addition, we add ¬t as a condition to every other rule in R.
Observe that if the first rule is executed, the variable t (being
set to 1) blocks the execution of all rules except the remaining
three. Furthermore, t can only be set back to 0 if l1 and l2 are
set to 1. Thus these three have to be executed as well. We see
that setting t to 1 implies that l1 and l2 are set to 1 as well as
t is set back to 0.

We now want to argue that the diameter k is in O(s2). Let
us consider an improving sequence and its corresponding se-
quence of rules. Observe that the variable g can change only
from 0 to 1 and not back. We thus first consider the rules
where g is required to be 0. Rules of type (R1) can be ex-
ecuted at most s times since every time one hj variable has
to be set to 1. Rules of type (R2) can be executed at most l
times as it is ensured in the condition of the rules that at most
l of the gijm variables can be set to 1. Since gm, m ∈ [l], can
only be set to 1 and not back to 0, rules of type (R3) can be
executed at most l times. Rule (R4) can be executed at most
once. Next, we turn to the rules where g is required to be 1.
Rules of type (R5) require that a hj variable is set to 0. Since
only s of the hj variables exist, only s of these rules can be
executed. Similarly, only l rules of type (R6) can be used in
an improving sequence. In total this yields at most 3l+2s+1
rules. Furthermore, every rule of the form p :! l1 > l1, l2 > l2
corresponds to four classical rules. Thus, we see that at most
O(s2) rules can be used in an improving sequence.

Due to the close relationship between planning and GCP-
nets, membership in W[1] can easily be shown by a reduction
to planning in SAS+ over Boolean domains with effect size
of one. When parameterized by the plan length this problem
was shown to be W[1]-complete by Bäckström et al. [2012].
The basic idea of the reduction is to view a rule p : l > l as
an action of the form p → l and the outcomes o1 and o2 as
initial state and goal, respectively.

Notice that the W[1]-completeness result for GCP-
DOMINANCE parameterized by k gives a polynomial algo-
rithm for any fixed k. Next, we show that the parameters c
and e alone do not help by establishing paraNP-hardness for
their combination.

Theorem 5. The GCP-DOMINANCE problem parameterized
c and e is paraNP-hard.

Proof. The NP-complete 3-SAT problem is the satisfiabil-
ity problem over formulas in conjunctive normal form where
each clause is of size three. Let var (ϕ) = {x1, . . . , xn} and
ϕ = {C1, . . . , Cm}, where Ci = li1 ∨ li2 ∨ li3 such that the
lij are literals over var (ϕ). W.l.o.g. assume that m ≥ 3.

We construct a GCP-net C = (V,R) in the following way.
The variables are defined (by slight abuse of the notation) as
V := var (ϕ) ∪ C ∪ H ∪ {f, g}, where C := {c1, . . . , cm}
represents the clauses, and H := {g2, . . . , gm−1} contains
additional auxiliary variables. The set R contains the follow-
ing conditional preference rules:

(R1) ¬f : xi > ¬xi for i ∈ [n]

(R2) > : f > ¬f
(R3) f ∧ lij : ci > ¬ci for i ∈ [m], j ∈ [3]



(R4) c1 ∧ c2 : g2 > ¬g2
gi−1 ∧ ci : gi > ¬gi for 2 < i < m− 1

gm−1 ∧ cm : g > ¬g
(R5) g : ¬v > v for v ∈ V \ {f, g}

In the outcome o1 we set each variable to 0, while in the out-
come o2 we set f and g to 1 and all other variables to 0.
The maximum size of the conditions (parameter c) can be
bounded by 2 and the maximum effect occurrences (parame-
ter e) can be bounded by 4, since each ci variable, i ∈ [m],
occurs exactly 4 times in the effect of a rule. Thus, all param-
eters can be bounded by constants. Finally, we set k := 2|V |.

The correctness can be seen by a closer look at the rules.
Since all variables are 0 in o1 we can use the rules of type
(R1) to set variables in var (ϕ) to 1, i. e., to choose an assign-
ment. Eventually, the rule > : f > ¬f is used to set variable
f to 1 and hereby fix the assignment. Then, the rules of type
(R3) are used to set the ci to 1, which is possible whenever
clause Ci is satisfied by the chosen assignment. As soon as
all variables in C are set to 1, the rules of type (R4) can be
sequentially applied to set g to 1. The rules of type (R4) sim-
ulate the single rule c1 ∧ · · · ∧ cm : g > ¬g, which cannot be
directly used due to its unbounded condition size. Finally, the
rules of type (R5) are used to set all variables with the excep-
tion of f and g back to 0, which allows to arrive at o2.

Although parameter c leads to paraNP-hardness, it will
turn out that it is necessary to obtain the first FPT-result. We
will make use of the following lemma to establish this result.

Lemma 6. The out-degree of the preference graph is at most
k · c + k.

Theorem 7. The GCP-DOMINANCE problem parameterized
by k and c can be solved in time O∗

(
(k · c + k)k

)
.

Proof. A simple search tree algorithm suffices: Starting from
o1, the search tree branches over at most k · c + k possible
improving flips at every node and checks whether it reaches
o2 in at most k steps.

Proposition 8. The GCP-DOMINANCE problem parameter-
ized by |V | can be solved in time O∗(2|V |).

Proof. This FPT-result is easy to obtain because the number
of vertices in the corresponding preference graph is bounded
by 2|V |. Since at most |V | outcomes are reachable from ev-
ery outcome, the number of edges is at most 2|V | · |V |. For
deciding dominance it suffices to check reachability in the
preference graph, which can be done in linear time w.r.t. the
size of the graph.

In the setting of planning, the parameter e can be seen as
a less restrictive version of the maximum number of variable
occurrences vo, i. e., e ≤ vo. The parameter vo was con-
sidered in the work of Kronegger et al. [2013]. The cor-
responding proof for the planning setting [Kronegger et al.,
2013][Theorem 5] can be easily strengthened to require only
the parameters k and e instead of k and vo.

Corollary 9. The GCP-DOMINANCE problem parameter-
ized by k and e can be solved in time O∗(k! · ek).

Finally, we show that GCP-DOMINANCE is fixed-
parameter tractable when parameterized by |R|.
Theorem 10. The GCP-DOMINANCE problem parameter-
ized by |R| can be solved in time O∗(2|R|)
Proof. Let C = (V,R) be a GCP-net, o1, o2 be outcomes and
Vd be the variables where o1 and o2 differ. Furthermore, at
most |R| variables occur in the effect of rules in R. Let Ve

be the set of these variables. In a preprocessing step we can
check if Vd ⊆ Ve, otherwise we can immediately return “no”.

Since |R| rules can only modify |Ve| ≤ |R| variables, the
number of outcomes that are reachable from o1 in the cor-
responding preference graph of C is bounded by 2|R|. Let
D be the induced subgraph of the preference graph that con-
tains o1, o2 and all reachable outcomes from o1. Since ev-
ery outcome has an outdegree of at most |R|, D has at most
2|R| · |R| edges. Checking whether o2 is reachable from o1
can be done in time linear in the size of the graph D and thus
in time O∗(2|R|).

5 Conclusion
In this paper we have initiated the parameterized complexity
analysis of GCP-nets. To this end, we have identified sev-
eral natural parameters of GCP-nets such as the diameter k,
the maximum size of the conditions c, the effect occurrences
e, etc. We have analysed both the complexity of finding the
diameter and of deciding dominance when certain parameter
combinations (most of them including the diameter) are taken
into account. Our parameterized complexity results range
from fixed-parameter tractability via completeness for W[1]
to paraNP-hardness. Roughly speaking, this means that the
corresponding parameter combinations help a lot, a bit, or not
at all to limit the high complexity of the dominance problem.

On the top of our agenda is to continue searching for effi-
cient fixed-parameter algorithms for GCP-net related prob-
lems such as the consistency problem. This is especially
promising since our first results already show that the sim-
pler structure of GCP-nets compared to planning allows for
faster algorithms. For example Theorem 10 has a run-
time of O∗(2|R|) in comparison to the runtime of O∗(2|R| ·
|R|!) for the corresponding planning result [Kronegger et
al., 2013][Proposition 6]. Moreover, we intend to study
new parameterizations of GCP-nets. In the study of GCP-
DIAMETER we have left a gap between lower and upper
bounds on the complexity (we have co-W[1]-hardness and
XP-membership). Closing this gap will further shed light on
the complexity of GCP-nets.

Other important extensions of our work we envisage is the
application of our parameters and methods to other related
formalisms such as TCP-nets [Brafman et al., 2006]. Further-
more, the search for fixed-parameter algorithms in the area of
voting applied to CP-nets [Xia et al., 2008] remains an inter-
esting task for future work.
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