
The Complexity of Recognizing Incomplete
Single-Crossing Preferences

Edith Elkinda, Piotr Faliszewskib, Martin Lacknera, Svetlana Obraztsovac

aUniversity of Oxford, Oxford, United Kingdom
bAGH University of Science and Technology, Kraków, Poland

cHebrew University of Jerusalem, Jerusalem, Israel

Abstract
We study the complexity of deciding if a given profile of incomplete votes (i.e., a
profile of partial orders over a given set of alternatives) can be extended to a single-
crossing profile of complete votes (total orders). This problem models settings
where we have partial knowledge regarding voters’ preferences and we would
like to understand whether the given preference profile may be single-crossing.
We show that this problem admits a polynomial-time algorithm when the order
of votes is fixed and the input profile consists of weak orders, but becomes NP-
complete if we are allowed to permute the votes. Moreover, we identify a number
of practical special cases of the latter problem that admit polynomial-time algo-
rithms.

Keywords: Computational social choice, preference domains, recognition
algorithms, incomplete preferences

1. Introduction

An important job for a designer of a multi-agent system is identifying a good
method of aggregating the agents’ preferences. It is well-known that this is not
an easy task, at least if agents’ preferences can be arbitrary total orders over the
available alternatives: every preference aggregation mechanism for this setting
exhibits undesirable behavior on some inputs [1]. However, the designer’s task
becomes much easier when agents’ preferences possess additional structure.

For instance, the well-known class of single-peaked preferences [8] admits a
voting rule that always selects a Condorcet winner (an alternative that is preferred
to every other alternative by a majority of voters) and is strategyproof [35]. More-
over, single-peaked preferences admit efficient algorithms for problems that are
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more complex than selecting a single winner and that are known to be hard for
general preferences, such as choosing a good ranking of the alternatives [10] or a
representative committee [7]. A more detailed discussion of algorithmic advances
in detecting and exploiting structured preferences (such as single-peaked prefer-
ences) can be found in a recent survey by Elkind et al. [23].

In this paper, we focus on another restricted preference domain, namely, that
of single-crossing preferences. A preference profile is single-crossing with re-
spect to a fixed ordering of voters if for every pair of alternatives a, b it holds
that all voters who prefer a to b precede all voters who prefer b to a or vice
versa. A profile is single-crossing if the votes can be permuted so as to achieve
the single-crossing property. Single-crossing preferences, originally introduced
by Mirrlees [34] and Roberts [39], arise in situations where voters and candi-
dates are spread over a spectrum of opinions—say, from extreme left-wing ones
to extreme right-wing ones—and left-leaning voters prefer left-leaning candidates
to right-leaning ones, and the other way round for the right-leaning voters. While
this domain is perhaps not as well-known as that of single-peaked preferences,
it has many of the same desirable properties: for instance, under single-crossing
preferences the majority relation is transitive [34], and single-crossing preferences
admit efficient algorithms for several voting problems that are hard for the general
domain [16, 41, 32].

However, in practice we rarely have access to voters’ full preferences: voters
are far more likely to only report some part of their preference order, e.g., rank
a few top alternatives or report a small number of pairwise comparisons. Indeed,
in an overwhelming majority of data sets in PrefLib [33] preference profiles
contain partial orders. This phenomenon is recognized by computational social
choice researchers, who showed that many of the positive results that are known to
hold for complete preference profiles can be extended to partial preference profiles
[5, 36]. It also motivated research on the possible/necessary winner problem [29,
6, 42, 4], where we ask whether a given candidate wins in some/all extensions of
a given profile of partial votes to a profile of full votes, under a particular voting
rule. In a similar vein, we can ask if a profile of partial votes can be extended so
that it enjoys a particular structural property, such as being single-peaked/single-
crossing, and, if the answer is positive, whether we can identify an ordering of
candidates/voters witnessing this. Answering this question would tell us whether
voters’ preferences may be essentially one-dimensional in nature; if this answer is
positive, we may be able to make a reasonably good decision quickly and without
eliciting full preferences.

For incomplete single-peaked preferences, the complexity of this problem has
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been investigated by Lackner [30], who proved that it is NP-complete when the
input may consist of arbitrary partial orders, and more recently by Fitzsimmons
[27], who showed it to be polynomial-time solvable for weak orders. The goal of
our paper is to initiate the complexity-theoretic investigation of this problem for
incomplete single-crossing preferences.
Our Contribution. We consider the complexity of deciding whether a given
profile of partial orders can be extended to a profile of total orders that is single-
crossing. We investigate this problem both for the setting where we are allowed to
permute the votes so as to achieve the single-crossing property and for the setting
where the desired ordering of the votes is fixed.

We first focus on the case where the ordering of the votes is provided as part of
the input, and show that our problem admits an efficient algorithm when the input
profile consists of weak orders, or when no input vote contains an antichain of size
3 and for every pair of candidates there is at least one voter who is able to compare
them. We then turn to the problem of checking whether a given profile of partial
orders can be extended to a profile of total orders that is single-crossing with
respect to some ordering of votes. We show that this problem is NP-complete,
even if all votes in the input are weak orders with antichains of size at most 2.
Given these hardness results, we focus on top orders and obtain polynomial-time
algorithms under mild additional assumptions on voters’ preferences. We show
that, given a profile of top orders R, we can efficiently decide whether it can be
extended to a single-crossing profile of total orders if R contains (i) at least one
full vote and (ii) the input profile is narcissistic, i.e., each candidate is ranked first
by at least one voter.

We also investigate alternative extensions of the single-crossing property to
the domain of partial votes. In particular, we define the notion of a blockwise
single-crossing, and show that such profiles can be detected efficiently.
Relevance of Our Study. We believe that understanding the single-crossing
property in the context of partial preference orders is important in its own right.
However, our research also has a more direct motivation: knowing that a profile
of partial preference orders can be extended to a single-crossing one can simplify
the winner determination process, both in single-winner and in multi-winner elec-
tions.

Consider a profile of top orders in a single-winner election. If we know that
the votes can be extended to a single-crossing profile for a given voter order, then
we can find the median vote in this order and pick its top candidate as the winner.
This candidate is a possible Condorcet winner and, thus, a natural one to select.
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For the case of multi-winner elections, Skowron et al. [41] have shown an
efficient winner determination algorithm for the voting rule of Chamberlin and
Courant [13], for the case of single-crossing elections (in the general setting, the
rule is NP-hard [38, 31]). Their algorithm focuses on the top parts of the votes,
but requires the order witnessing that the election is single-crossing. Thus, if we
could find an order witnessing that a profile of top orders can be extended to a
single-crossing profile, then we could use the algorithm of Skowron et al. [41].

There is a further added benefit of considering the single-crossing property
in the context of partial preference orders. Intuitively, when voters cast partial
preference orders, they only specify pairwise comparisons that they truly care
about. Consequently, the resulting profiles are much more likely to satisfy various
structural properties (such as being single-peaked/single-crossing) than profiles
where voters are forced to rank candidates that they do not care about (and may
therefore rank them in a way that obscures the true preference structure).
Related Work. Both single-peaked and single-crossing preferences can be rec-
ognized in polynomial time if the input is a collection of total orders [3, 25, 21,
11]. The problem becomes much more difficult if we ask whether a given prefer-
ence profile is close to being single-peaked or single-crossing, or, more generally,
close to belonging to some restricted domain, for an appropriate notion of dis-
tance; indeed, many (though not all) variants of this problem are known to be
NP-hard [24, 12, 26]. Both single-peaked and single-crossing preferences arise
in societies that are, in some sense, one-dimensional; however, the two notions
are distinct, in the sense that there are single-peaked elections that are not single-
crossing and vice versa [34]; see also the work of Elkind et al. [22]. Finally, we
want to mention dichotomous preferences, a special case of weak orders where
voters only distinguish between approved and disapproved candidates. Elkind and
Lackner [20] study algorithmic question related to structure in dichotomous pref-
erences and also consider the problem of recognizing single-crossing preferences
given a dichotomous input.

2. Preliminaries

For each integer k, we denote the set {1, . . . , k} by [k]. Let C be a finite set
of candidates (alternatives). A (strict) partial order is a binary relation � over C
that has the following properties: for every a, b, c ∈ C (i) a 6� a; (ii) a � b implies
b 6� a; (iii) a � b and b � c implies a � c. We say that a pair of alternatives
a, b is comparable in � if a � b or b � a; otherwise we say that a and b are
incomparable in � and write a⊥� b. A partial order � is said to be total if a � b
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or b � a for every a, b ∈ C. A total order � is an extension of a partial order �′ if
for every pair of alternatives a, b such that a �′ b it holds that a � b.

When a � b, we say that � ranks a above b. For readability, we will often
denote a generic partial order by r and write a �r b or r : a � b when r ranks a
above b.

A partial order � is said to be a weak order if for all a, b, c ∈ C it holds that
a⊥� b and b⊥� c implies a⊥� c. Equivalently, in a weak order � all candidates
are partitioned into several equivalence classes C1, . . . , Ck so that for a ∈ Ci,
b ∈ Cj we have a⊥� b if i = j and a � b if i < j. Weak orders can be understood
as total orders with ties allowed. A top order is a weak order with k equivalence
classes where |C1| = · · · = |Ck−1| = 1. Intuitively, top orders correspond to a
voter ranking some of her most preferred alternatives, and leaving the remaining
alternatives unranked. Thus, we refer to the candidates in

⋃k−1
i=1 Ci as the ranked

candidates. A set C ′ ⊆ C is said to be an antichain in� if a⊥� b for all a, b ∈ C ′.
A listR = (r1, . . . , rn) is called a profile of partial/weak/top orders if r1, . . . , rn

are partial, weak, or top orders, respectively. We refer to elements of [n] as voters:
the order ri is the vote of voter i.
Single-Crossing Property. We are now ready to define what it means for a pro-
file to be single-crossing.

Definition 1. A profile R = (r1, . . . , rn) of total orders over a candidate set C is
said to be single-crossing with respect to a total order @ on [n] if for every pair
of candidates a, b ∈ C such that the first voter in @ prefers a to b it holds that
the voters who prefer a to b precede in @ the voters who prefer b to a. A profile
R = (r1, . . . , rn) of total orders is said to be single-crossing if there exists a total
order @ on [n] such thatR is single-crossing with respect to @.

A natural way to extend this definition to profiles of partial orders is to follow
the route taken by Lackner [30] and ask if the partial orders in a given profile
can be extended so that the resulting profile of total orders is single-crossing.
Following the tradition in the computational social choice literature, which dates
back to the seminal paper of Konczak and Lang [29], we refer to such profiles as
possibly single-crossing.

Definition 2. A profile R = (r1, . . . , rn) of partial orders over a candidate set C
is said to be possibly single-crossing with respect to a total order @ on [n] if there
exists a profile R̂ = (r̂1, . . . , r̂n) of total orders, where r̂i is an extension of ri for
each i ∈ [n], that is single-crossing with respect to @. R is said to be possibly
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single-crossing if there exists a total order @ on [n] such thatR is single-crossing
with respect to @.

Computational Problems. The goal of this paper is to study the computational
complexity of the following two problems (and their special cases):

PARTIAL ORDER SINGLE-CROSSING CONSISTENCY—FIXED OR-
DER (PO-SCC-F):
Given a candidate set C, a profile R = (r1, . . . , rn) of partial or-
ders over C, and a total order @ on [n], decide whetherR is possibly
single-crossing with respect to @.

PARTIAL ORDER SINGLE-CROSSING CONSISTENCY (PO-SCC):
Given a candidate set C and a profile R = (r1, . . . , rn) of partial
orders over C, decide whetherR is possibly single-crossing.

We are also interested in special cases of PO-SCC-F and PO-SCC where the
input profile contains: (i) weak orders only (WO-SCC-F/WO-SCC), and (ii) top
orders only (TO-SCC-F/TO-SCC).

Our primary goal is to distinguish between polynomial-time solvable and NP-
complete problems. For some NP-complete problems we present fixed-parameter
tractable (fpt) algorithms, i.e., algorithms with a runtime of O (f(k) · poly(n)),
where k is some parameter of the input, f is a computable function (usually ex-
ponential), and n is the input size. Thus, a fixed-parameter tractable algorithm
has polynomial runtime if the parameter is fixed to a constant. For an extensive
introduction to fpt algorithms and parameterized complexity see the monographs
[17, 18].

3. Fixed Order of Votes

To build our intuition concerning the possibly single-crossing property, we
start by considering a relaxed variant of this property, which we call the seemingly
single-crossing property. One advantage of the definition below is that it is easy
to check in polynomial time whether a given profile of partial orders is seemingly
single-crossing with respect to a given order of voters.

Definition 3. A profile R = (r1, . . . , rn) of partial orders over a candidate set C
is seemingly single-crossing with respect to a total order @ over [n] if for every
pair of candidates a, b ∈ C the voters can be divided into two (possibly empty)
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consecutive intervals with respect to @ so that (i) in one of these intervals each
voter either prefers a to b or indicates that a and b are incomparable, and (ii) in
the other interval each voter either prefers b to a or indicates that a and b are
incomparable. A profile R = (r1, . . . , rn) of partial orders is seemingly single-
crossing if it is seemingly single-crossing with respect to some total order @ over
[n].

By construction, a profile of total orders is single-crossing if and only if it
is seemingly single-crossing. Moreover, a profile of partial orders that is possibly
single-crossing with respect to a given order of voters is seemingly single-crossing
with respect to that order of voters. Indeed, if a profile of partial orders is not
seemingly single-crossing with respect to the order of voters @, there is a pair
of distinct alternatives a, b ∈ C and a triple of voters i, j, k with i @ j @ k
such that i and k prefer a to b, whereas j prefers b to a; clearly, no refinement of
this profile can be single-crossing with respect to @. The reader may wonder if
the converse implication also holds, i.e., whether a profile of partial orders that is
seemingly single-crossing with respect to some order of voters @ can be extended
to a profile of total orders that is single-crossing with respect to @; note that this
would immediately imply that PO-SCC-F is polynomial-time solvable. However,
the following example shows that this is not the case.

Example 1. Consider the following profile R = (r1, r2, r3, r4) of partial orders
over the candidate set C = {a, b, c}

r1 : a � b � c, r2 : c � b, r3 : b � a, r4 : a � c.

It is easy to see that R is seemingly single-crossing with respect to the order
1 @ 2 @ 3 @ 4. However, R cannot be extended to a profile of total orders
(r̂1, r̂2, r̂3, r̂4) that is single-crossing with respect to @. Indeed, a �r1 b, b �r3 a
implies that r̂4 would have to rank b above a, and b �r1 c, c �r2 b means that r̂4
would have to rank c above b. By transitivity, it follows that r̂4 ranks c above a,
but this is impossible, since a �r4 c.

This argument does not show that R is not possibly single-crossing. In fact,
R is possibly single-crossing with respect to a different order of voters, namely
1 @′ 2 @′ 4 @′ 3, as witnessed by the following profile (r̂1, r̂2, r̂3, r̂4) of total
orders (for convenience, the votes below are listed according to @′):

r̂1 : a � b � c, r̂2 : a � c � b,

r̂4 : a � c � b, r̂3 : c � b � a.
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However, we can modify R so that it remains seemingly single-crossing, but
is not possibly single-crossing with respect to any order of voters. Specifically, set
C ′ = {a, b, c, d, e, f}, and consider the following profile R′ = (r′1, r

′
2, r
′
3, r
′
4) of

partial orders over C ′, which is obtained by prepending a single-crossing profile
of total orders over {d, e, f} toR:

r′1 : d � e � f � a � b � c,

r′2 : e � d � f, f � a, f � c � b,

r′3 : e � f � d, d � c, d � b � a,

r′4 : f � e � d, d � b, d � a � c.

It is easy to see that R′ is seemingly single-crossing with respect to 1 @ 2 @ 3 @
4. Further, the {d, e, f}-parts of orders inR′ ensure that the only orders for which
R′ is seemingly single-crossing are 1 @ 2 @ 3 @ 4 and 4 @ 3 @ 2 @ 1. Thus, no
extension ofR is single-crossing.

Note that Example 1 uses partial orders that are not weak orders. This is essen-
tial: later (Corollary 6), we will see that every seemingly single-crossing profile of
weak orders is possibly single-crossing. Thus, we structure the remainder of this
section as follows: first, we consider the complexity of PO-SCC-F for arbitrary
partial orders, proving an NP-hardness result for the general case and identifying
some tractable special cases, and then we focus on weak orders, where we are able
to obtain a polynomial-time algorithm for the general case.

3.1. Partial Orders
Example 1 shows that, to solve PO-SCC-F, it is not sufficient to check whether

the input profile is seemingly single-crossing, which can be done in polynomial
time by verifying this property for every pair of candidates. We were unfortunately
not able to determine the complexity of PO-SCC-F. However, we can show that
this problem becomes polynomial-time solvable if we additionally assume that no
order in the input profile contains an antichain of size 3, and no pair of candidates
is incomparable in every vote.

Theorem 2. One can determine in polynomial time whether a profile of partial
ordersR is possibly single-crossing with respect to a given order @ on [n] if both
of the following two conditions hold:

(1) R does not contain a vote with an antichain of size 3, and
(2) no pair of candidates is incomparable in every vote.
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Proof. We reduce our problem to the Boolean satisfiability problem with clause
size two. Consider a candidate set C = {c1, . . . , cm}, and let @ be the given
order on [n]. For each pair of distinct candidates ci, cj and each vote r we define
a Boolean variable named [r : ci � cj], representing the truth of the statement
“r : ci � cj”.

The following conditions have to hold in order for R to be possibly single-
crossing. For every vote r ∈ R and every triple of distinct candidates ci, cj, ck it
should hold that:

[r : ci � cj]↔ ¬[r : cj � ci] (antisymmetry),

[r : ci � cj] ∧ [r : cj � ck]→ [r : ci � ck] (transitivity),

and for every triple of votes r, r′, r′′ with r @ r′ @ r′′ it should hold that

¬([r : ci � cj] ∧ [r′ : cj � ci] ∧ [r′′ : ci � cj]) (single-crossing).

Our aim is to show that when conditions (1) and (2) in the theorem statement
are satisfied, the resulting Boolean formula can be represented as a formula with
clause size two. Since Boolean satisfiability for formulas with clause size two is
decidable in linear time [2], we require only polynomial time.

First, the clauses enforcing antisymmetry already have size two. For any tran-
sitivity clause, at least one of the variables is already known to us, as otherwise
we would have an antichain of size three. We can replace this variable with a fixed
truth value, obtaining a clause of size two.

Let us now consider the single-crossing property. Recall that for every pair of
candidates ci, cj there is at least one vote r+ in which these two candidates are
comparable. We distinguish two cases: r+ : ci � cj and r+ : cj � ci.

First, we assume that [r+ : ci � cj] is true. We have to consider the relative
positions of r+, r, r′, r′′ in @. If r+ is to the left of r′, i.e., either r+ @ r @ r′ @ r′′

or r @ r+ @ r′ @ r′′ holds, we can replace the single-crossing condition for
r, r′, r′′ by ¬([r′ : cj � ci] ∧ [r′′ : ci � cj]). Indeed, if the modified condition is
violated, the profile is not possibly single-crossing with respect to @, as witnessed
by r+ : ci � cj , r′ : cj � ci and r′′ : ci � cj (and if the modified condition is
satisfied, so is the original condition). If r+ is to the right of r′, we can use the
same argument to drop r′′ from the formula.

Let us now assume that [r+ : cj � ci] is true. Again, we have to consider the
position of r+ in @. If r+ is to the left of r, i.e., r+ @ r @ r′ @ r′′, we can replace
the single-crossing condition for r, r′, r′′ by ¬([r : ci � cj] ∧ [r′ : cj � ci]):
if the modified condition is violated, the profile is not possibly single-crossing
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with respect to @, as witnessed by the triple of voters r+, r, r′ and the pair of
candidates ci, cj . A similar argument applies if r+ is to the right of r′′. Finally, if
r+ is between r and r′′, we can replace the single-crossing condition for r, r′, r′′

by ¬([r : ci � cj] ∧ [r′′ : ci � cj]).

If a profile does not satisfy conditions (1) and (2) in the statement of Theo-
rem 2, but there are only few antichains of size 3 and ‘universally’ incomparable
candidate pairs, we can still solve PO-SCC-F efficiently.

Theorem 3. Let a denote the total number of antichains of size 3 in R and let
b denote the number of candidate pairs that are incomparable in all votes. It is
possible to determine whether a profile of partial orders R is possibly single-
crossing with respect to a given order in time O

(
2a+b · poly(m,n)

)
.

Proof. We use the satisfiability encoding of Theorem 2. We guess one variable
of each antichain and, for each pair of candidates that are incomparable in every
vote, we guess the preferences of the first voter over these candidates. For each
collection of guesses, we obtain an instance that satisfies the two conditions of
Theorem 2; it remains to observe that there are 2a+b guesses to be considered.

3.2. Weak Orders
For weak orders, a stronger result is true: WO-SCC-F is polynomial-time

solvable with no additional constraints on the input profile. Moreover, for weak
orders the phenomenon illustrated in Example 1 does not arise: every seemingly
single-crossing profile of weak orders is possibly single-crossing. To prove this,
we will now present an algorithm that, given a profile R of weak orders that
is seemingly single-crossing with respect to an ordering @, explicitly constructs
an extension of R that is single-crossing with respect to @. We first describe a
subroutine E used by our algorithm.

Algorithm E : The algorithm takes as input a profile R = (r1, . . . , rn) of weak
orders, where r1 is a total order, and an order @ over [n] such that 1 @ i for
each i ∈ {2, . . . , n}. It computes a profile of total orders as follows:

1. It orders the votes inR according to @ to obtain a profile S = (s1, . . . , sn);
note that r1 = s1.

2. It sets ŝ1 = s1 and for each i ∈ {2, . . . , n} (in the ascending order),
it extends si to ŝi by ranking all the unranked candidates in maximal
antichains the same way as in ŝi−1 (note that by the time it processes
si, ŝi−1 is a total order).
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3. It returns (ŝ1, . . . , ŝn).

Theorem 4. There is a polynomial-time algorithm that given a profileR of weak
orders that is seemingly single-crossing with respect to an order @ on [n], outputs
an extension ofR that is single-crossing.

Proof. Let C be a set of candidates and let R = (r1, . . . , rn) be a profile of weak
orders over C that is seemingly single-crossing with respect to an order @ on [n].
Without loss of generality, we assume that @ is given by 1 @ 2 @ · · · @ n. To find
a single-crossing extension R̂ = (r̂1, . . . , r̂n) ofR, we first compute an extension
r̂1 of r1:

1. Set r̂1 = r1.
2. Repeat the following steps until r̂1 is a total order:

(a) Pick a maximal antichain in r̂1. Let C ′ ⊆ C be the corresponding set
of candidates.

(b) For each i = 2, . . . , n, if C ′ is not an antichain in ri (i.e., ri ranks some
candidates in C ′), then order C ′ in r1 the same way as in ri.

(c) If C ′ is an antichain in all votes, order C ′ in r1 arbitrarily.

Now we have a profile R′ = (r̂1, r2, . . . , rn) of top orders, where r̂1 is a total
order. We run Algorithm E on R′ to obtain a profile of total orders. Note that in
Algorithm E we set S = R′, and therefore this profile, which we will denote by
R̂ = (r̂1, r̂2, . . . , r̂n), is an extension of R. We claim that R̂ is single-crossing
with respect to @.

Suppose that R̂ is not single-crossing and let ` be the largest index such that
(r̂1, . . . , r̂`−1) is single-crossing. Thus, (r̂1, . . . , r̂`) is not single-crossing and there
exists a pair a, b of candidates such that

r̂1 : a � b, r̂`−1 : b � a, r̂` : a � b.

(Although the single-crossing property is violated if the conditions above hold for
some triple r̂x, r̂y, r̂z with x < y < z, due to the minimality of ` we can assume
that x = 1, y = ` − 1, z = `.) Candidates a and b are ranked differently in r̂`−1
and r̂`, so Algorithm E could not have derived the ranking a � b in r̂` from r̂`−1.
Hence, in r` we also have a � b. Since r̂1 and r̂`−1 rank a and b differently and
given how vote r̂1 is computed, there must be a k, 1 ≤ k < `−1 such that rk : a �
b and neither a nor b are ranked in any ri, i ∈ [k − 1]. Moreover, by the same
argument, there must be a k′, k < k′ < ` such that rk′ : b � a and neither a nor
b are ranked in any ri, k′ < i < `. Consequently, the triple (rk, rk′ , r`) witnesses

11



that R is not seemingly single-crossing with respect to 1 @ 2 @ · · · @ n, a
contradiction with our assumption. Thus, the algorithm outputs a single-crossing
extension ofR.

This theorem has two important consequences.

Corollary 5. WO-SCC-F is solvable in polynomial time.

Proof. If the given profile R of weak orders is seemingly single-crossing with
respect to the order @, we can apply the algorithm of Theorem 4. If R is not
seemingly single-crossing with respect to @, then it cannot be possibly single-
crossing with respect to @.

Corollary 6. A profile of weak order is possibly single-crossing if and only if it is
seemingly single-crossing.

4. Arbitrary Order of Voters

We will now consider the scenario where the ordering of the votes is not given
in the input, and we have to decide whether the given profile is possibly single-
crossing with respect to some ordering of the votes. Note that in this setting we can
assume that all votes in the input profileR are pairwise distinct, as we can simply
remove all duplicates without changing the answer. Therefore, we can viewR as a
set of votes, and identify a voter i with her vote ri. In particular, it will sometimes
be convenient to write ri @ rj in place of i @ j.

4.1. Partial Orders and Weak Orders
In the last section, we have seen that PO-SCC-F is NP-complete. If the or-

dering of the votes is not part of the input, i.e., we consider PO-SCC, hardness
even extends to weak orders. To show this, we will provide a reduction from the
BETWEENNESS problem, defined below, which is known to be NP-complete [37].

BETWEENNESS:
Given a set S = {s1, . . . , sm} and a set T of triples over S, decide
whether there exists a total order < over S such that for each triple
(si, sj, sk) in T it holds that either si < sj < sk or sk < sj < si.
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To reduce BETWEENNESS to PO-SCC, we use instances of the following
gadget. LetR = (r1, r2, r3) be a profile over candidate set {a, b, c, d}, where:

r1 : a � b � c � d,

r2 : b � a � c � d,

r3 : b � a � d � c.

The reader can verify that this profile is single-crossing only with respect to the
order 1 @ 2 @ 3 and its reverse.

Theorem 7. WO-SCC problem is NP-complete, even for votes with antichains
of size at most 2.

Proof. Clearly, this problem is in NP. To show that is is NP-hard, we provide a
reduction from BETWEENNESS.

Let I = (S, T ) be an instance of BETWEENNESS, where S = (s1, . . . , sm) and
T = (t1, . . . , tn) is a set of triples over S. The idea of our proof is to form a profile
where the voters correspond to the elements of the set S and the constraints from
the set T are implemented within the partial orders using the gadget described just
before the theorem statement. We let E = A ∪ B ∪ C, where A = {a1, . . . , an},
B = {b1, . . . , bn}, C = {c1, . . . , cn}, and D = {d1, . . . , dn}, and form a profile
R = (r1, . . . , rm) of partial orders over E as follows:

1. For each ` ∈ [m], each i, j ∈ [n], i < j, each x ∈ {ai, bi, ci, di} and each
y ∈ {aj, bj, cj, dj}, we set r` : x � y.

2. For each triple t` = (si, sj, sk) ∈ T , we set:

ri : a` � b` � c` � d`, rj : b` � a` � c` � d`, rk : b` � a` � d` � c`.

3. Finally, for each ` ∈ [m] and i ∈ [n], ri : a` � c`, ri : b` � c`, ri : a` � d`,
and ri : b` � d`.

Observe that two candidates x, y ∈ E are only incomparable if they share the
same index and either x ∈ A and y ∈ B or if x ∈ C and y ∈ D. Thus, we have
defined a weak order with antichains of size at most 2.

We claim thatR is possibly single-crossing if and only if I is a “yes”-instance
of BETWEENNESS. First, assume that R is possibly single-crossing with respect
to some order @. By construction, for each triple t` = (si, sj, sk) ∈ T , we have
either ri @ rj @ rk or rk @ rj @ ri. This means that an order < over S such
that sx < sy if and only if rx @ ry witnesses that I is a “yes”-instance of the
BETWEENNESS problem.
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On the other hand, assume that I is a “yes”-instance of the BETWEENNESS

problem and that some order < over S witnesses this. We define an order @ over
{r1, . . . , rm} so that rx @ ry if and only if sx < sy. To show that R is possibly
single-crossing with respect to @, we will now extendR to a profile of total orders
as follows. Consider a triple t` = (si, sj, sk) ∈ T . Without loss of generality,
assume that si < sj < sk (the case sk < sj < si can be handled in a similar way).
We define the voters’ preferences regarding a`, b`, c` as follows:

1. For each rx such that rx @ ri, set rx : a` � b` � c` � d`.
2. For each ry (y 6= j) such that ri @ ry @ rk, set ry : b` � a` � c` � d`.
3. For each rz such that rk @ rz, set rz : b` � a` � d` � c`.

After this operation, the profile consists of total orders, and it is clear that it is
single-crossing with respect to @.

We have just seen that WO-SCC is NP-complete in general. In the following
we will present a fixed-parameter algorithm that is particularly efficient for pro-
files of weak orders that are close to being total orders. More formally, we consider
profiles the maximum number of incomparable pairs in each of the votes. The fpt
algorithm is based on the following proposition.

Proposition 8. There is a polynomial-time algorithm that given an instance I =
(C,R) of WO-SCC, where R = (r1, . . . , rn) is a profile of weak orders, and an
index ` such that r` is a total order, decides if there is an order @ such that: (i) for
each k, k 6= `, r` @ rk, and (ii)R is possibly single-crossing with respect to @.

Proof. Without loss of generality, we can assume that ` = 1. Our algorithm con-
sists of two parts. First, in Algorithm L, we compute an order @ witnessing that
R is seemingly single-crossing (if indeed it is), and then we invoke Algorithm E
to compute an appropriate extension of R. If Algorithm L fails at any point, we
reject the input (if we reach Algorithm E , failure is impossible).

By the theorem’s assumptions, the first element in @, r1, is a total order. We
define a relation @∗ over {r2, . . . , rn} as follows: For each i, j, 2 ≤ i, j ≤ n, if
there is a pair of candidates a, b ∈ C such that r1 and ri order a, b identically but
rj orders them differently, we set ri @∗ rj . Algorithm L is given below:

Algorithm L : We compute the relation @∗ over {r2, . . . , rn} and extend it to
relation @∗∗ over R as follows: for each pair i, j ∈ [n] we set ri @∗∗ rj
if either i = 1 or ri @∗ rj . Using the standard algorithm for topological
sorting, we check if @∗∗ can be extended to a linear order. If so, we compute
and return this order (this will be our order @). If not, we reject.
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It is immediate that if this algorithm rejects then R is not possibly single-
crossing with respect to any order @ that places r1 first. We claim that if it does not
reject, then the profileR is seemingly single-crossing with respect to the order @
computed by L. If it were not, then there would be two candidates a and b and two
integers k and `, 1 < k, ` ≤ n, k 6= n, such that r1 @ rk @ r` and a �r1 b, b �rk a,
and a �r` b. However, by definition of @∗, we would have r` @∗ rk, contradicting
the fact that Algorithm L did not reject. Thus,R is seemingly single-crossing with
respect to @. Now, by Theorem 4, we can invoke Algorithm E with R and @ as
input to get a single-crossing extension ofR.

Let k-WO-SCC be the special case of WO-SCC where each vote contains at
most k incomparable pairs of candidates.

Theorem 9. The k-WO-SCC problem can be decided in timeO(2k ·poly(m,n)).

Proof. Let R = (r1, . . . , rn) be our input profile. For each ri we execute the
following steps (if we accept for some ri, then we accept the whole input, and if
we fail for each ri, then we reject the whole input):

1. Compute the set Ri of all possible extensions of ri to a total order (there are
at most 2k of them).

2. For each r in Ri, we execute the following:
(a) We apply Algorithm L from the proof of Proposition 8 to the profile

(r, r1, . . . , ri−1, ri+1, . . . , rn) with r taking the role of r1 in this algo-
rithm. Note that Algorithm L simply requires that r is a total order and
does not require the rest of the profile to consist of top orders. Let @
be the output of L. If this operation succeeds, we proceed to the next
step.

(b) We use a variant of Algorithm E to compute the extension R̂ of R
(namely, we extend all the votes one by one in the order @, setting the
order of each incomparable pair in the current vote to be the same as
in the preceding, just extended vote). The algorithm terminates with
R̂ as the single-crossing extension ofR.

It is straightforward to see that the algorithm is correct: In essence, it performs
a full search through all reasonable choices of the order @ and uses only “safe”
extensions of votes in the modification of Algorithm E .

15



4.2. Top Orders
The case of top orders is by far the most important and practical one. It turns

out that it is also quite challenging: we have not been able to determine the exact
complexity of TO-SCC. Nonetheless, we will now describe a polynomial-time
algorithms for this problem that works under additional mild constraints on voters’
preferences.

For this result, we need to assume that our profile of top orders is narcissistic,
i.e., every candidate is ranked first by at least one voter; this assumption dates
back to the work of Bartholdi and Trick [3], and has been used in several recent
computational social choice papers [15, 41]; we expect it to be satisfied when
candidates are allowed to vote in the election. For such profiles, we can relax
the condition of Proposition 8: we still require that at least one voter submits a
total order, but make no assumptions about this voter’s position in the profile.
We remark that one can assume that the profile contains a total order if, e.g., the
person who wants to understand if the given election is possibly single-crossing
is herself a voter in this election; this assumption is also required for some of the
algorithmic results of Lackner [30], and is known to reduce the communication
complexity for vote elicitation [14].

Theorem 10. There is a polynomial-time algorithm that given an instance I =
(C,R) of the TOP PARTIAL ORDER SCC problem, where R = (r1, . . . , rn) is
narcissistic and contains at least one total order, decides if R is possibly single-
crossing.

Proof. In what follows, it will be convenient to assume that no top order inR is a
prefix of another top order inR, i.e., it cannot be the case that ri = ci1 � · · · � cik ,
rj = ci1 � · · · � ci` for some i, j ∈ [n], i 6= j, and k, ` ∈ [m]. Indeed, if such a
pair of votes is present, we can remove the “shorter” vote; the modified profile is
a “yes”-instance of our problem if and only if the original profile was.

We will use the fact that every narcissistic single-crossing profile is single-
peaked [22]. We remind the reader that a vote r over a candidate set C is said to
be single-peaked with respect to an sp-axis C, where C is a total order over C,
if for every j ≤ |C| the set of candidates ranked in top j positions in r forms a
contiguous segment of C; a profileR is said to be single-peaked with respect to C
if every vote inR is single-peaked with respect to C (among the many equivalent
definitions of single-peaked preferences, this one is best suited for our purposes).

Let C = {c1, . . . , cm}, and let R(c) denote the set of all votes in R that rank
c first. We say that a total order @ of voters and a total order C of candidates are
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consistent if for every pair of candidates a, b ∈ C it holds that aC b implies that in
@ all votes inR(a) precede all votes inR(b). It is immediate from Proposition 5 in
[22] that if a narcissistic profileR is single-crossing with respect to an ordering of
votes given by @, then the (unique) order of candidates C that is consistent with it
is an sp-axis witnessing thatR is single-peaked; we remark that C is well-defined
since for every candidate a ∈ C the votes in R(a) form a contiguous segment of
@. Another useful fact is that, if all votes in a single-crossing profile are distinct,
the ordering of votes that witnesses that this profile is single-crossing is unique up
to a reversal (see Proposition 1 in [19]). Consequently the respective order C is
unique up to a reversal as well.

The algorithm proceeds in two stages. First, it builds up the two “ends” of the
voters’ order, moving towards the center. It uses several rules to extend these ends,
which will be detailed below. When none of these rules are applicable, there is a
clear separation between the candidates in the already-ordered votes and the re-
maining candidates. We then build a smaller instance of our problem that involves
only a subset of candidates and a subset of votes, call our algorithm recursively on
this smaller instance, and then check if the result can be “pasted” into the original
profile. We will now present the details of the algorithm.

We will say that an ordering @ of the votes inR is good ifR can be extended
to a complete profile that is single-crossing with respect to @ and all votes in
R(c1) precede in @ all votes in R(cm). Also, we will say that a total order C on
C is good if it is consistent with some good ordering of the votes; note that this
implies that c1 C cm and there is a complete extension of R that is single-peaked
with respect to C. We note that (C,R) is a “yes”-instance of our problem if and
only if there exists a good ordering of the votes in R; indeed, we can always
ensure that c1 precedes cm by reversing the ordering, if necessary.

Consider our input profileR = (r1, . . . , rn). We will build two total orders CL

(for “left”) and CR (for “right”) on two disjoint sets of candidates CL ⊆ C and
CR ⊆ C. When doing so, we will ensure that every good order C on C coincides
with CL on CL and with CR on CR, and, moreover, c C c′ whenever c ∈ CL,
c′ ∈ C \ CL or c ∈ C \ CR, c′ ∈ CR. In a similar vein, we build two disjoint sets
of votes RL ⊆ R and RR ⊆ R and two total orders @L and @R on these sets so
that every good ordering @ of the votes in R coincides with @L on RL and with
@R onRR and, moreover, r @ r′ whenever r ∈ RL, r′ ∈ R\RL or r ∈ R\RR,
r′ ∈ RR. We denote the “rightmost” candidate in CL by cL: formally, cL ∈ CL

and cC cL for all c ∈ CL \ {cL}. Similarly, cR is the “leftmost” candidate in CR:
cR ∈ CR and cR C c for all c ∈ CR \ {cR}. We also set CM = C \ (CL ∪ CR),
RM = R \ (RL ∪RR). Initially we have CM = C, CL = CR = ∅ andRM = R,
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RL = RR = ∅. For readability, we will sometimes view the partial orders CL,
CR, @L, and @R as sequences of elements of CL, CR,RL, andRR, respectively.

Let r∗ be some total order that appears in R, and assume that r∗ is given by
cm � · · · � c1. Since r∗ ranks c1 last, for every good axis C it holds that c1 is the
leftmost candidate with respect to C. Hence we set CL := {c1}, CM := CM \{c1},
CL = (c1), cL = c1.

We will now present several rules that enable us to extend the orders CL, CR,
@L, and @R, and grow the sets CL, CR,RL, andRR.

(L1) Consider a voter r that ranks c1 first. Suppose that r contains candidates
other than c1, i.e., r = c1 � ci1 � · · · � cik . If a total order C satis-
fies c1 C cm, but does not have (c1, ci1 , . . . , cik) as a prefix, then any ex-
tension of r is not single-peaked with respect to C. Thus, if C is good,
it has (c1, ci1 , . . . , cik) as a prefix, and hence we can extend CL and CL

by setting CL = CL ∪ {ci1 , . . . , cik}, CL = (c1, ci1 , . . . , cik). This also
means that if we have a “yes”-instance of our problem, the vote that ranks
c1 first must be unique (recall that we assume that all votes are distinct and
no vote is a proper prefix of another vote). Thus, if a vote that ranks c1
first is not unique, we stop and output “no”. Otherwise we use the unique
vote r that ranks c1 first to extend CL and CL, as described above, and set
CM = CM \ {ci1 , . . . , cik}, cL = cik .

(L2) Suppose that some candidate c ∈ CL appears in CL, for each candidate
c′ ∈ CL with c′CL c the votes inR(c′) have been placed in @L, but none of
the votes in R(c) has been placed in @L yet. Consider some good order @.
As @ is consistent with some good C, and every good C has CL as a prefix,
R(c) needs to be appended to the right end of @L. Now, consider two votes
r′, r′′ ∈ R(c), and let i be the first position where they differ; let c′ be the
candidate ranked i-th in r′, and let c′′ be the candidate ranked i-th in r′′.
Extensions of r′ and r′′ are single-peaked with respect to some good order
C, and CL is a prefix of any such C. Thus, if we have a “yes”-instance of
our problem, for any good order C it holds that c′ C c C c′′ or c′′ C c C c′;
assume without loss of generality that c′CcCc′′. Then the votes fromR(c′′)
appear after r′ and r′′ in every good @. This means that r′ appears before r′′

in @, as otherwise c′ and c′′ would cross more than once. In this way, we can
decide on the relative order of all votes in R(c); if the resulting relation on
these votes turns out to be cyclic, we output “no” and stop. Otherwise, we
setRL := RL ∪R(c) and append the votes inR(c) to @L in the prescribed
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order. Finally, we check that RL is seemingly single-crossing with respect
to @L, and output “no” and stop if this is not the case.

(L3) Now, suppose that there is a vote r ∈ RL and a candidate that appears in this
vote, but has not been placed in CL. Let c be the highest-ranked candidate
in r with this property. For every good order C it holds that the candidates
appearing before c in r form a contiguous segment of C. Therefore, we
append c to the right end of CL. We also set CL := CL ∪ {c}, CM :=
CM \ {c}, cL := c.

We apply rules (L2) and (L3) until neither of them is applicable: all candidates
ranked by voters inRL appear in CL and all votes that rank a candidate in CL first
have been added to RL. At this point, we have CL = c1 CL · · · CL cL. We now
turn our attention to the total order r∗. If r∗ ∈ RL, then CL is a total order over C
and hence all voters from R have been placed RL; since RL is seemingly single-
crossing, we can invoke Theorem 4 to produce a total extension of RL. Thus,
assume that r∗ 6∈ RL, i.e., on every good axis cm appears after all votes in CL.

(M1) We first check that r∗ agrees with CL, i.e., if a, b ∈ CL and aCL b, then r∗

ranks b above a. If this is not the case, we output “no” and stop. Now, sup-
pose that some candidates from C\CL appear in r∗ below cL; let ci1 , . . . , cik
be the list of all such candidates, listed in order of their appearance in r∗ (i.e.,
ci1 �r∗ · · · �r∗ cik). Consider an arbitrary good C. As r∗ has to be single-
peaked with respect to C, it follows that ci1 , . . . , cik appear on the right end
of C, in this order. Hence, we set CR := {ci1 , . . . , cik}, CR := (ci1 , . . . , cik),
CM := CM \ {ci1 , . . . , cik}, cR := ci1 .

We will now build up CR, CR, RR, and @R in the same way as CL, CL, RL,
and @L, i.e., we define rules (R2) and (R3) by making appropriate modifications to
(L2) and (L3), and apply them for as long as they extend CR or @R. Once we get
stuck (andRM 6= ∅), we consult with r∗ again, using the following generalization
of (M1).

(M2) We first check that r∗ agrees with CL and CR, i.e., if a, b ∈ CL and aCL b,
then r∗ ranks b above a, and if a, b ∈ CR and a CR b, then r∗ ranks a
above b. If this is not the case, we output “no” and stop. Now, suppose that
some candidates from CM appear in r∗ below some candidates in CL ∪CR;
let C ′ = {c ∈ CM | c′ �r∗ c for some c′ ∈ CL ∪ CR}. If there exist
candidates c ∈ CM , c′ ∈ CL, c′′ ∈ CR such that r∗ ranks both c′ and c′′
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above c, we output “no” and stop, as this means that r∗ is not single-peaked
with respect to any axis C that has CL as its prefix and CR as its suffix.
Hence, we can assume that all candidates in the set {c ∈ CL ∪ CR | c �r∗

c′ for some c′ ∈ C ′} belong to exactly one of the sets CL, CR. Suppose
that this set is CR, i.e., some cj ∈ CR is the highest-ranked candidate from
CL ∪ CR in r∗, and let ci1 , . . . , cik be the list of all candidates from CM

that appear below cj in r∗, listed in order of their appearance in r∗ (i.e.,
ci1 �r∗ · · · �r∗ cik). Consider an arbitrary good order C. As r∗ has to be
single-peaked with respect to C, it follows that cik , . . . , ci1 appear just after
cL in C, in this order. Therefore, we set CL := CL ∪ {ci1 , . . . , cik} and
extend CL by appending (cik , . . . , ci1) to it; also, we set CL := ci1 . By the
same argument, if the highest-ranked candidate from CL∪CR in r∗ belongs
to CL, we let CR := CR ∪ {ci1 , . . . , cik} and extend CR by prepending
(ci1 , . . . , cik) to it; also, we set CR := ci1 . Finally, we remove {ci1 , . . . , cik}
from CM .

After (M2) has been applied, we can try to apply (L2) and (L3) again. If this
extends CL, (M2) may be applicable again, producing an extension of CR, so
(R2) and (R3) may become applicable. We proceed in this manner until none of
our rules applies. This means, in particular, that r∗ ranks all candidates in CM

above all candidates in CL ∪ CR. If at this point r∗ appears in RL or RR, we are
done, as this means that we can reconstruct all of C, and, as a consequence, all of
@, so assume this is not the case. We will now describe another rule that can be
used to extend CL or CR.

(M3) Set s = |CM |, and consider an arbitrary vote r in RM . Suppose that some
candidate from CL ∪CR appears in top s positions in r; let c be the highest-
ranked such candidate. Note that if c 6∈ {cL, cR}, we can stop and output
“no”: as every good order C has CL as its prefix and CR as its suffix, no
extension of r is single-peaked with respect to C.

Now, suppose that c = cL, and c appears in position i in r. Observe that
i 6= 1, as otherwise (L2) would be applicable. Let C ′ be the set of candidates
that appear above cL in r; we have C ′ ⊆ CM . Also, set C ′′ = CM \C ′. Note
that 1 ≤ |C ′| < s, so C ′′ 6= ∅. Consider a good order C. We know that the
set C ′ ∪ {cL} is contiguous with respect to C; this implies that C ′′ ∪ {cR}
is also contiguous with respect to C. However, to append C ′ to CL or to
prepend C ′′ to CR, we have to decide in which order the elements of these
sets should be added. To this end, we use r∗: if cm, who is the top candidate
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in r∗, is not in C ′, we append the elements of C ′ to CL, in reverse order
of their appearance in r∗, and otherwise, i.e., if cm 6∈ C ′′, we prepend the
elements of C ′′ to CR, in order of their appearance in r∗. To see why this is
correct, observe that, if cm 6∈ C ′, this means that in C candidate cm appears
to the right of all candidates in C ′ ∪ {cL}, and therefore any vote that ranks
cm first (such as r∗) lists the candidates in C ′∪{cL} in the right-to-left order
with respect to C; if cm 6∈ C ′′, the argument is symmetric.

The analysis above is for the case c = cL; the case c = cR can be analyzed
in the same way.

If an application of (M3) extends CL or CR in a non-trivial way, some of the
rules (L2)–(L3), (R2)–(R3), and, subsequently, (M2) may become applicable, and
then (M3) may be applicable again. We apply these rules in an arbitrary order,
with one constraint: we only invoke (M3) when other rules are not applicable.
This is because this rule assumes that the candidates in CL ∪ CR form a suffix
of r∗. When none of the rules applies, we have a configuration that enjoys the
following properties:

• All votes in RL only rank candidates in CL, and all votes in RR only rank
candidates in CR.

• For each candidate c that appears in CL we haveR(c) ⊆ RL, and the order
of voters inR(c) is given by @L; similarly, for each candidate c′ that appears
in CR, we have R(c′) ⊆ RR, and the order of voters in R(c′) is given by
@R.

• No vote inRM contains a candidate from CL ∪ CR in top |CM | positions.

Now, let us focus on the votes in RM \ {r∗}. Suppose first that no candidate
from CL ∪ CR appears in these votes. (We treat this case separately to build up
reader’s intuition; however, analysis for this case, which is presented below, is
subsumed by the analysis for the general case.) In this case, we can call our al-
gorithm recursively on the instance that consists of candidates in CM and votes
in RM ∪ {r∗|CM

}. If this turns out to be a “no”-instance, then our input instance
is a “no”-instance as well. On the other hand, suppose that the recursive call pro-
duces a solution R̂M ; let r′ and r′′ be the first and the last vote in R̂M (these are
total orders over CM ). We then order the votes in RM in accordance with R̂M ,
and obtain a total order of all votes in R by prepending @L and appending @R to
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this ordering. Denote the resulting order by @. We will argue that R is possibly
single-crossing with respect to @, by explicitly showing how to complete each
order in R. (We could argue that R is seemingly single-crossing with respect to
that order and invoke Theorem 4, but it is useful to have an explicit description of
the solution.) Specifically, we proceed as follows.

We use Theorem 4 to extend the votes in RL and RR to total orders over
CL and CR, respectively; recall that, since these are top orders and rules (L2)
and (R2) ensure that they are seemingly single-crossing with respect to @L and
@R, respectively, this is always possible. Observe that the rightmost voter in RL

orders the candidates in CL according to the reverse of CL, and the leftmost voter
in RR orders the candidates in CR according to CR. Next, we complete all votes
as follows.

• to each vote in RL we append r′ followed by r∗|CR
(by construction, r∗|CR

coincides with CR);

• to each vote inRM \ {r∗} we append r∗|CL∪CR
;

• to each vote in RR we append r′′ followed by r∗|CL
(by construction r∗|CL

is the reverse of CL).

It is immediate that this profile is single-crossing as long as the one returned by
the recursive call is.

The situation is a bit more complicated if some voters inRM rank some of the
candidates in CL ∪ CR, as this imposes additional restrictions on how these votes
can be ordered. Note, however, that if none of these votes disagrees with r∗ on
CL ∪ CR (in the sense that for every vote r ∈ RM and every pair of candidates
a, b ∈ CL ∪CR such that a �r∗ b either a and b are both unranked in r or a �r b),
the procedure described in the previous paragraph still applies.

Thus, suppose that some votes in RM disagree with r∗ on CL ∪ CR. Observe
that every such vote ranks all candidates in CM : indeed, as (M3) does not apply,
candidates in CL ∪ CR cannot appear in top |CM | positions in r, so, they appear
in position |CM | + 1 and lower, whereas the top |CM | positions are taken up by
candidates in CM . The following simple observation will be useful in our analysis.

Lemma 11. Suppose that two votes r, r′ ∈ RM disagree with each other on
CL ∪ CM , i.e., there exist c, c′ ∈ CL ∪ CR such that c �r c′, but c �r′ c

′. Then
if c, c′ ∈ CL or c, c′ ∈ CR, we have a “no”-instance of our problem. Further, if
c ∈ CL, c′ ∈ CR then r @ r′ in any good order @, and, if c ∈ CR, c′ ∈ CL then
r′ @ r in any good order @.
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Proof. If r and r′ appear in RM , this means that for every good axis C it holds
that the top candidates of r and r′ appear after all candidates in CL. Therefore,
both r and r′ should rank the candidates in CL according to the reverse on CL,
so in particular they cannot disagree on CL. By the same argument, they cannot
disagree on CR. Now, if c ∈ CL, c′ ∈ CR, the votes in R(c) precede both r and
r′ in any good order @, so if we place r′ before r, candidates c and c′ would cross
more than once. For the case c ∈ CR, c′ ∈ CL, the argument is similar.

We will now modify our algorithm for the case where CM and CL ∪ CR are
cleanly separated, as follows.

First, we invoke Lemma 11 for every pair of votes inRM that disagree on CL∪
CR and output “no” if it tells us that we have a “no”-instance of our problem. If this
does not happen, Lemma 11 produces a relation on votes inRM ; if this relation is
not a partial order, i.e., has cycles, we output “no” as well. Thus, suppose that this
relation is indeed a partial order. Let R′M = {r | r′|CM

= r for some r′ ∈ RM};
the elements of R′M are top orders on CM . We call our algorithm recursively on
(CM ,R′M), and return “no” if it returns “no”. Now, suppose our recursive call
returns a solution, i.e., an ordering @′ of R′M . and a completion of partial orders
in R′M to total orders over CM that is single-crossing with respect to @′. We now
construct a total order @ onR as follows.

(Flip) If there exist two orders r−, r+ ∈ RM that disagree both on CM and on
CL ∪ CR and Lemma 11 implies that r− @ r+ in every good order @, but
r+|CM

@′ r−|CM
, we flip @′, i.e., construct an order @′′ such that for every

r1, r2 ∈ R′M it holds that r1 @′′ r2 if and only if r2 @′ r1,and then set
@′:=@′′. Note thatR′M remains single-crossing with respect to @′ after the
flip. We only apply this operation once.

(Order-M) If r, r′ ∈ RM , r|CM
6= r′|CM

, and r|CM
@′ r′|CM

, we set r @ r′.
If r, r′ ∈ RM and r|CM

= r′|CM
, since R contains no duplicates, r and r′

differ on some candidates in CL ∪ CR, in which case we use Lemma 11 to
order them. This allows us to order all ofRM .

(Order-LR) We set r @ r′ whenever r, r′ ∈ RL and r @L r′ or r, r′ ∈ RR and
r @R r′. Also, we set r @ r′ whenever r ∈ RL, r′ 6∈ RL or r′ ∈ RR,
r 6∈ RR.

This procedure produces an ordering of the votes in R; if R is seemingly single-
crossing with respect to this ordering, we use Theorem 4 to completeR.
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Throughout the execution of the algorithm, we output “no” only if there is di-
rect evidence that the input profile cannot be extended to a complete profile that is
single-crossing. It remains to argue that if our procedure outputs an order @, butR
is not seemingly single-crossing with respect to @, then we have a “no”-instance
of our problem. Note that a violation of the single-crossing property may only be
caused by voters inRM ordering candidates in CL∪CR. Any such violation takes
the following form: r, r′ ∈ RM , r @ r′, but Lemma 11 says that r′ should precede
r in every good order of votes, i.e., a �r b, b �r′ a, where a ∈ CR, b ∈ CL.
Further, this can only happen if r|CM

and r′CM
are both total orders over CM , and,

moreover, r and r′ disagree on both CM and CL ∪ CR (if r and r′ agree on CM ,
(Order-M) orders them according to Lemma 11). In particular, this means that the
two orders r− and r+ mentioned in (Flip) are well-defined.

Suppose for the sake of contradiction that there is a good order of votes @∗

for R. Consider the set R∗ = {r|CM
, r′|CM

, r−|CM
, r+|CM

}; it contains at least
two distinct elements, and all of its elements are total orders over CM . IfR∗ is not
single-crossing, we obviously have a “no”-instance of our problem, so assume that
it is single-crossing. By Proposition 1 in [19], there are exactly two orders on R∗
such that R∗ is single-crossing with respect to these orders, and these orders are
reverse of each other (we emphasize that R∗ is a set, i.e., contains no duplicates).
Only one of these orders places r−|CM

before r+|CM
(recall that r−|CM

and r+|CM

are distinct); denote this order by @1.
As @∗ is good, it has to agree with @1, i.e., for all r1, r2 ∈ {r, r′, r−, r+}

such that r1 @∗ r2 and r1|CM
6= r2|CM

it holds that r1|CM
@1 r2|CM

. Now, recall
that our recursive call produced an ordering @′ of R′M such that R′M is single-
crossing with respect to @′; moreover, after (Flip) has been executed, we have
r−|CM

@′ r+|CM
. It follows that @′ coincides with @1 on R∗. During (Order-M)

we placed r before r′; as we have r|CM
6= r′|CM

, this means that r|CM
@′ r′|CM

,
or, equivalently, r|CM

@1 r′|CM
. As @∗ agrees with @1, we have r @∗ r′. But this

is a contradiction with the fact that a �r b, b �r′ a for some a ∈ CR, b ∈ CL.
Thus, there is no good order of the votes in R, and, consequently, R cannot be
extended to a single-crossing profile.

5. Relaxing the Single-Crossing Condition

Throughout this paper, we implicitly assumed that voters’ true preferences are
total orders, and the reasons why voters submit partial orders have to do with
computation and/or communication constraints. Alternatively, one can imagine
that some voters are truly indifferent between certain candidates. It is not clear
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whether requiring the given profile of partial orders to extend to a single-crossing
profile of total orders is the right generalization of the single-crossing condition
to such settings. In fact, one can argue that in case of true indifferences seemingly
single-crossing profiles are exactly the profiles that should be considered single-
crossing: indeed, in such profiles no pair of alternatives can be observed to cross
more than once. If we view being seemingly single-crossing as a desirable prop-
erty of a profile in its own right, it is natural to ask whether it can be detected
efficiently. However, this question turns out to be computationally difficult, even
if we restrict ourselves to weak orders.

Proposition 12. The problem of deciding if a profile of weak orders is seemingly
single-crossing is NP-complete, even if we restrict the votes to have antichains of
size at most 2.

Proof. This statement follows immediately from Theorem 7 and Corollary 6.

Now, in a seemingly single-crossing profile, as we progress from left to right,
for a given pair of candidates a, b we may go from a voter who is indifferent
between a and b to one who clearly prefers a to b and then to one who is indifferent
between a and b again. It is perhaps more intuitive to require instead that the only
allowable transitions are from a � b to indifference between a and b to b � a,
or vice versa. We will call such profiles blockwise single-crossing, since we move
from a block of voters that prefer a to b to a block of voters that is indifferent
to a block that prefers b to a. We remark that the order restriction as defined by
Rothstein [40]—which corresponds to a definition of single-peakedness for weak
orders—is exactly the blockwise single-crossing restriction for weak orders.

Definition 4. A profile R = (r1, . . . , rn) of partial orders over a candidate set C
is blockwise single-crossing with respect to a total order @ over [n] if for every
pair of candidates a, b ∈ C there exist indices 0 ≤ k ≤ ` ≤ n + 1 such that
either (i) for all 1 ≤ i ≤ k we have a �ri b, for all k < i < ` candidates
a and b are incomparable in ri, and for all ` ≤ i ≤ n we have b �ri a, or,
alternatively, (ii) for all 1 ≤ i ≤ k we have b �ri a, for all k < i < ` candidates
a and b are incomparable in ri, and for all ` ≤ i ≤ n we have a �ri b. A profile
R = (r1, . . . , rn) of partial orders is blockwise single-crossing if it is blockwise
single-crossing with respect to some total order @ over [n].

Observe that profile R from Example 1 is not blockwise single-crossing with
respect to 1 @ 2 @ 3 @ 4: we go from a � c to a⊥� c to a � c. Consequently,
the profileR′ from that example is not blockwise single-crossing.
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Clearly, it is easy to check if a given profile of partial orders R is block-
wise single-crossing with respect to a given order @. Interestingly, while check-
ing whetherR is blockwise single-crossing (for any arbitrary order) appears to be
more difficult, this problem turns out to be polynomial-time solvable as well.

Theorem 13. There is a polynomial-time algorithm that given a profile of partial
orders R checks whether R is blockwise single-crossing, and, if the answer is
positive, outputs an ordering of the voters that witnesses this.

Proof. We reduce our problem to the well-known consecutive-ones problem [9].
Recall that an instance of the consecutive-ones problem is given by a 0-1 matrix;
the goal is to reorder the columns of this matrix so that in each row all the 1s
appear consecutively. This problem is known to admit a linear-time algorithm
[9, 28]. Reductions to consecutive-ones problem have been employed to devise
efficient algorithms for checking whether a given profile of total orders is single-
peaked [3] or single-crossing [11]; recently, the former result has been extended
to weak orders [27]. Our reduction is similar to that of Bredereck et al. [11].

Given a profile of partial orders R = (r1, . . . , rn) over a candidate set C,
|C| = m, we construct a 0-1 matrix M as follows. We have one column for every
voter inR and two rows for each ordered pair of distinct candidates (a, b), which
we denote by Ra,b,+ and Ra,b,−. We place a 1 in the i-th column of Ra,b,+ if a �ri b
and we place 0 in this column otherwise. Also, we place a 0 in the i-th column
of Ra,b,− if a �ri b and we place 1 in this column otherwise. This completes the
reduction.

To see why this reduction is correct, suppose first that the input profile is block-
wise single-crossing with respect to an order @ on [n]; assume without loss of
generality that this order is 1 @ · · · @ n. Consider an arbitrary pair of candidates
a, b ∈ C. Swapping a and b if necessary, we can assume that there exist indices
0 ≤ k ≤ ` ≤ n+ 1 such that for all 1 ≤ i ≤ k we have a �ri b, for all k < i < `
candidates a and b are incomparable in ri, and for all ` ≤ i ≤ n we have b �ri a.
Then in Ra,b,+ we have 1s up to position k, followed by 0s, in Ra,b,− we have 0s
up to position k, followed by 1s, in Rb,a,+ we have 0s up to position ` − 1, fol-
lowed by 1s, and in Rb,a,− we have 1s up to position `− 1, followed by 0s. Thus,
ordering the rows of M according to @ results in all 1s appearing consecutively
in each row.

Conversely, suppose that we managed to reorder the columns of M so that all
1s appear consecutively in each row; assume without loss of generality that the
matrix M itself has this property. We will argue that in this case R is blockwise
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single-crossing with respect to 1 @ · · · @ n. Consider an arbitrary pair of can-
didates a, b ∈ C; we will show that for this pair the blockwise single-crossing
property is satisfied. Since 1s appear consecutively in Ra,b,+, we know that vot-
ers who prefer a to b form a contiguous segment of @. Similarly, since 1s appear
consecutively in Rb,a,+, we know that voters who prefer b to a form a contiguous
segment of @. Thus, we can assume without loss of generality that all voters who
prefer a to b appear before all voters who prefer b to a in @. Hence, @ is of the
form S1 @ A @ S2 @ B @ S3, where A is the set of voters who prefer a to b, b is
the set of voters who prefer b to a, and the sets S1, S2, and S3 consist of voters who
are indifferent between a and b (given two set of voters X, Y , we write X @ Y to
indicate that in @ all voters from X precede all voters from Y ). We consider the
following cases:

• A = ∅, B = ∅. Then all voters are indifferent between a and b, and the
blockwise single-crossing property for this pair is trivially satisfied.

• A = ∅, B 6= ∅. We will argue that in this case either S3 = ∅ or S1 ∪S2 = ∅,
and hence the pair a, b satisfies the blockwise single-crossing property. In-
deed, if this is not the case, in row Rb,a,−, we have 1s in positions corre-
sponding to voters from S1 ∪ S2 and S3 and 0s in positions corresponding
to voters in B, so a 0 appears between two 1s.

• A 6= ∅, B = ∅. This case is symmetric to the previous case: by considering
the row Ra,b,−, we can conclude that either S1 = ∅ or S2 ∪ S3 = ∅.

• A 6= ∅, B 6= ∅. If S1 6= ∅, then we have a 0 between two 1s in row Ra,b,−

(1s correspond to elements of S1 and B, 0 corresponds to an element of A).
Similarly, if S3 6= ∅, then we have a 0 between two 1s in row Rb,a,− (1s
correspond to elements of A and S3, 0 corresponds to an element of B).
Thus, we have S1 = S3 = ∅ in this case.

In all four cases the pair a, b does not provide a witness that R is not blockwise
single-crossing with respect to @. As a and b were chosen arbitrarily, this com-
pletes the proof.

Finally, let us consider the relation between possibly single-crossing, seem-
ingly single-crossing, and blockwise single-crossing. The following theorem makes
the containment relation between the corresponding classes of partial and weak
orders precise; for an overview we refer the reader to Figure 1.
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SSC

BSCPSC

(a) partial orders

SSC = PSC

BSC

(b) weak orders

Figure 1: The relation of possibly single-crossing (PSC), seemingly single-crossing (SSC) and
blockwise single-crossing (BSC) in partial orders and weak orders.

Theorem 14. Fix a set of candidates C, a set of voters [n], and the order 1 @ · · · @
n. Let PSC , BSC , and SSC be the set of profiles of partial orders that are pos-
sibly single-crossing, blockwise single-crossing, and seemingly single-crossing,
respectively, with respect to the given order @. Furthermore, let T be the set of
profiles of total orders and W the set of profiles of weak orders. Then the following
statements hold.

1. PSC ⊂ SSC

2. BSC ⊂ SSC

3. BSC 6⊂ PSC and PSC 6⊂ BSC

4. W ∩ BSC ⊂ W ∩ PSC = W ∩ SSC

5. T ∩ BSC = T ∩ PSC = T ∩ SSC

Proof. Statement 1 follows from the fact that if a profile of partial orders R can
be extended to a single-crossing profile of total orders, then R necessarily has to
satisfy the seemingly single-crossing property. The containment PSC ⊂ SSC is
strict because of Example 1.

Statement 2 follows immediately from the definitions. To see that the contain-
ment is strict consider the following profile of three partial orders: r1 : a⊥� b,
r2 : a � b, and r3 : b � a. This profile is seemingly single-crossing but not
blockwise single-crossing with respect to 1 @ 2 @ 3.

Let us consider Statement 3: PSC 6⊂ BSC follows from the counterexample
in the previous paragraph. To show that BSC 6⊂ PSC requires a more sophisti-
cated example, which is displayed in Figure 2. Towards a contradiction assume
that (r̂1, r̂2, r̂3) is an extension of (r1, r2, r3) to a single-crossing profile of total
orders. Note that either r̂3 : c′′ � a′′ or r̂3 : c′ � a′. Since r1 : c′′ � a′′ or

28



d

a

a′′

c′′

a′

c′

c

b

b′′

d′′

b′

d′

vote r1

a

a′′a′

b

b′′b′

d

d′ d′′

c

c′ c′′

vote r2

a

c

c′′

a′

c′

a′′

b

d

d′′

b′

d′

b′′

vote r3

Figure 2: A profile of partial orders that is blockwise single-crossing but not possibly single-
crossing.

r1 : c′ � a′, either r̂2 : c′′ � a′′ or r̂2 : c′ � a′ has to hold and hence r̂2 : c � a.
Analogously, either r̂3 : d′′ � b′′ or r̂3 : d′ � b′, from which we can conclude that
r̂2 : d � b. Since r3 : a � c and r̂2 : c � a, the single-crossing property implies
that r̂1 : c � a. Further, since r3 : b � d and r̂2 : d � b, the single-crossing
property implies that r̂1 : d � b. This implies that r1 : d � b � c � a � d, a
contradiction.

In Statement 4, W ∩ BSC ⊂ W ∩ SSC follows immediately from the defini-
tions and the counterexample of Statement 2. The equality W ∩PSC = W ∩SSC
is Corollary 6. To see Statement 5, note that the respective definitions do not differ
for total orders.

6. Conclusions and Open Problems

We summarize our results for SCC and SCC-F in Table 1. It is instructive
to compare them with recent results of Lackner [30] and Fitzsimmons [27] for
single-peaked preferences. Lackner proves that one can check in polynomial time
whether a profile of partial votes is single-peaked with respect to a given axis.
In contrast, verifying the possibly single-crossing property appears to be hard
even if the order of the votes is fixed, though we have not been able to obtain
a formal hardness result. Moreover, powerful algorithmic techniques that are very
useful for working with incomplete single-peaked preferences, such as reductions
to 2-SAT and to the consecutive ones problem, while applicable, appear to pro-
duce much weaker results in our setting. These are indications that incomplete
single-crossing preferences are more difficult to work with than incomplete single-
peaked preferences, and new insights are required.
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orders SCC-F SCC

partial open
FPT(a, b) (Thm. 3)

NPc (Thm. 7)

weak P (Thm. 4) NPc (Thm. 7)
FPT(k) (Thm. 9)

top P (Thm. 4) P under additional restr. (Thm. 10)

Table 1: Complexity results: P stands for “polynomial-time solvable”, NPc stands for “NP-
complete”, FPT(x) stands for “fixed-parameter tractable with respect to parameter x”.

The computational complexity of some of our problems remains open. Perhaps
the most intriguing is the complexity of TO-SCC (top orders, arbitrary order of
votes) and PO-SCC-F (partial orders, fixed order of votes). Also, given that much
of the real-life election data consists of incomplete preference orders, it would be
interesting to check how often real-life elections admit single-crossing extensions.
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[25] B. Escoffier, J. Lang, and M. Öztürk. Single-peaked consistency and its
complexity. In Proceedings of ECAI-2008, pages 366–370, July 2008.

32



[26] P. Faliszewski, E. Hemaspaandra, and L. Hemaspaandra. The complexity of
manipulative attacks in nearly single-peaked electorates. Artificial Intelli-
gence, 207:69–99, 2014.

[27] Zack Fitzsimmons. Single-peaked consistency for weak orders is easy. In
Proceedings of TARK-2015, pages 103–110, 2015.

[28] Michel Habib, Ross McConnell, Christophe Paul, and Laurent Viennot. Lex-
bfs and partition refinement, with applications to transitive orientation, inter-
val graph recognition and consecutive ones testing. Theoretical Computer
Science, 234(1):59–84, 2000.

[29] K. Konczak and J. Lang. Voting procedures with incomplete preferences. In
Proceedings of MPREF-2005, pages 124–129, 2005.

[30] M. Lackner. Incomplete preferences in single-peaked electorates. In Pro-
ceedings of AAAI-2014, pages 742–748, 2014.

[31] T. Lu and C. Boutilier. Budgeted social choice: From consensus to personal-
ized decision making. In Proceedings of IJCAI-2011, pages 280–286, 2011.

[32] K. Magiera and P. Faliszewski. How hard is control in single-crossing elec-
tions? In Proceedings of ECAI-2014, pages 579–584, 2014.

[33] N. Mattei and T. Walsh. Preflib: A library for preferences. In Proceedings
of ADT-2013, pages 259–270, 2013.

[34] J. Mirrlees. An exploration in the theory of optimal income taxation. Review
of Economic Studies, 38:175–208, 1971.

[35] H. Moulin. Axioms of Cooperative Decision Making. Cambridge University
Press, 1991.

[36] N. Narodytska and T. Walsh. The computational impact of partial votes on
strategic voting. In Proceedings of ECAI-2014, pages 657–662, 2014.

[37] J. Opatrny. Total ordering problem. SIAM Journal on Computing, 8(1):
111–114, 1979.

[38] A. Procaccia, J. Rosenschein, and A. Zohar. On the complexity of achiev-
ing proportional representation. Social Choice and Welfare, 30(3):353–362,
2008.

33



[39] K. W. S. Roberts. Voting over income tax schedules. Journal of Public
Economics, 8(3):329–340, 1977.

[40] P. Rothstein. Order restricted preferences and majority rule. Social choice
and Welfare, 7(4):331–342, 1990.

[41] P. Skowron, L. Yu, P. Faliszewski, and E. Elkind. The complexity of fully
proportional representation for single-crossing electorates. Theoretical Com-
puter Science, 569:43–57, 2015.

[42] L. Xia and V. Conitzer. Determining possible and necessary winners given
partial orders. Journal of Artificial Intelligence Research, 41:25–67, 2011.

34


