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Abstract
Incomplete preferences are likely to arise in real-
world preference aggregation and voting systems.
This paper deals with determining whether an in-
complete preference profile is single-peaked. This
is essential information since many intractable vot-
ing problems become tractable for single-peaked
profiles. We prove that for incomplete profiles the
problem of determining single-peakedness is NP-
complete. Despite this computational hardness re-
sult, we find two polynomial-time algorithms for
reasonably restricted settings.

1 Introduction
Both human and automated decision making often have to
rely on incomplete information. The same issue arises in joint
decision making – voting – in multi-agent systems. Konczak
and Lang [2005] distinguish two main sources of incomplete-
ness: The first one is intrinsic incompleteness where the voter
is unable or unwilling to give complete information, i.e., a to-
tal order on all candidates. The second one is epistemic in-
completeness where the voters do have preferences specified
by total orders but at the time of decision making these total
orders are not fully available. Of course, a combination of
these two scenarios is also possible.

Whereas complete preferences are usually modeled as to-
tal orders, incomplete preferences can be modeled as partial
orders and are therefore a more general concept. In particu-
lar, the determination of winners becomes harder since voting
protocols usually require total orders. It is therefore necessary
to consider completions of incomplete votes which are total
orders that are compatible extensions of the original partial
orders. The determination of possible and necessary winners
in incomplete elections is often NP-hard and thus a fast win-
ner determination is not feasible [Konczak and Lang, 2005;
Walsh, 2007; Betzler and Dorn, 2010; Pini et al., 2011;
Xia and Conitzer, 2011; Baumeister and Rothe, 2012].

A popular approach to deal with hardness of voting prob-
lems is to consider domain restrictions. The most common
restriction is single-peakedness [Black, 1948] (see Section 2
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for a definition). For example, computing the winner of a
Dodgson or Kemeny election, though ΘP

2 -complete in gen-
eral [Hemaspaandra et al., 1997; 2005], can be done in poly-
nomial time for single-peaked elections [Brandt et al., 2010].
Also the complexity of manipulation and control problems
often decreases [Faliszewski et al., 2011b]. These results let
us hope that efficient, polynomial time algorithms for com-
puting possible and necessary winners of single-peaked, in-
complete elections could be found. Walsh [2007] started in-
vestigating this issue and also pointed out a central question
in that regard: What happens if the axis for which the incom-
plete preference profile is single-peaked is not given as part
of the input but has to be determined?

Our paper deals with this question, namely how to deter-
mine single-peakedness for incomplete elections. In the fol-
lowing, let n denote the number of votes and let m denote the
number of candidates. The main results are as follows:
• We prove that determining whether an incomplete prefer-
ence profile is single-peaked is NP-complete. This is in con-
trast to the case of complete preferences for which single-
peakedness can be determined in linear time [Escoffier et al.,
2008]. Furthermore, we strengthen this result by showing
that NP-completeness still holds if a voter completely speci-
fies his preferences. (Section 4)

Apart from these hardness results, this paper contains two
polynomial time algorithms:
• (Guided Algorithm) The first algorithm requires that the
preference profile possesses a so-called guiding order, an im-
plicitly given completely specified vote. This is in particular
the case for profiles actually containing a complete vote. The
algorithm is applicable to weak orders (see Figure 1 for an
example and Section 2 for a definition). We obtain a runtime
of O(m · n). This algorithm is an improvement over the al-
gorithm by Escoffier et al. [2008] since it is applicable to a
broader class of preference profiles (weak orders instead of
total orders) while maintaining its runtime. (Section 5)
• (Unguided Algorithm) The second algorithm does not re-
quire a guiding order and is applicable to top orders. Top or-
ders rank an arbitrary number of top candidates; all remaining
candidates are ranked last and incomparable to one another
(see Figure 1 for an example). This algorithm has a runtime
of O(m2 · n). (Section 6)
• We have implemented the algorithms and performed
benchmarks on randomly generated preference profiles. Even
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Figure 1: Examples of different types of orders that are used
to specify preferences

large instances with 100,000 votes and 1,000 candidates can
be handled with ease. (Section 7)

2 Preliminaries
In this paper, preferences are represented by different types of
orders (see Figure 1 for examples). The most general type are
partial orders. A partial order P on a set X is a reflexive, an-
tisymmetric and transitive binary relation onX . We say that y
is ranked above x if xPy holds. If for two elements x, y ∈ X
neither xPy nor yPx holds, these two elements are incom-
parable. A partial order where the incomparability relation
is transitive is called a weak order. A weak order can thus
be considered a total order with ties. Weak orders are also
referred to as bucket orders (elements that tie are in the same
“bucket”), e.g., in [Fagin et al., 2006]. A weak order where
every incomparable element is minimal is called top order.
The ranked candidates of a top order T are those that are
not incomparable to another candidate. We would like to re-
mark that top orders appear as top lists in [Dwork et al., 2001;
Fagin et al., 2003] and as top-truncated votes in [Baumeister
et al., 2012]. Finally, a partial order with no incomparable
elements is called total order.

We use the notation 〈c1 > c2 > . . . > ck〉 to denote a top
order where c1, . . . , ck are ranked as stated and all other ele-
ments are ranked last, i.e., are minimal elements. We use 〈〉
to denote the empty order relation, i.e., all elements are in-
comparable. We sometimes use set operators (∪,∩, \) on top
orders with the intended meaning that we apply these opera-
tors to the corresponding sets of ranked candidates.

We would now like to address the usefulness of these or-
ders for expressing preferences. Total orders allow to fully
specify a ranking of options. Given a large set of options, this
might be unfeasible. Partial orders, on the other hand, allow
to specify the relative order of any pair of options. Thus they
can be seen as a very general formalism for representing in-
complete preferences. They are compatible with total orders
in the sense that partial orders can always be extended to to-
tal orders. Weak orders are less general than partial orders
but arise in many natural scenarios. For example every real-
valued utility function implies a weak order (candidates with
the same utility tie, i.e., are incomparable). If the elicitation
of preferences is costly, one might ask only for the most im-

portant (highest ranked) options of each voter. In such a case,
top orders arise. Top orders also are the natural type of or-
der for specifying preferences in some scoring protocols. We
will further comment on scoring protocols and top orders in
Section 8.

Throughout this paper we use C to denote the set of can-
didates or options. Votes are considered to be either partial,
weak, top or total orders. For a vote Vi, we use x �i y to
denote that (yVix) ∧ (x 6= y), i.e., x is ranked strictly higher
than y. If there is only one vote under consideration, usu-
ally denoted by V , we omit the index and write x � y. A
tuple (V1, . . . , Vn) of votes is called a (preference) profile of
{partial orders, weak orders, top orders, total orders}, de-
pending on the type of orders. Given a vote V and a set
of candidates C ′ ⊆ C, we define V [C ′] to be the vote V
restricted to candidates in C ′. Analogously, given a pref-
erence profile P = (V1, . . . , Vn), we define P[C ′] to be
(V1[C ′], . . . , Vn[C ′]). We denote the number of candidates
with m and the number of votes with n.

3 Single-peaked profiles
We start by giving a definition for single-peaked profiles of
total orders and then extend this definition to partial orders.
A central concept is that of an axis: this is a total order on
C. Let A be an axis. Throughout this paper we write x < y
instead of xAy. (Note that we use� for votes and< for axes.)
Our definition of single-peakedness for profiles of total orders
as well as for profiles of partial orders is based on valleys.
Definition 1 (v-valleys). Let V be a partial order on C. The
vote V contains a v-valley with respect to A if there exist
c1, c2, c3 ∈ C such that c1 < c2 < c3, c1 � c2 and c3 � c2.

The definition of v-valleys suffices to define single-
peakedness for profiles of total orders: A profile P of total
orders is single-peaked with respect to A if no vote V ∈ P
contains a v-valley with respect to A (and thus every vote
has only a single “peak”). A profile of total orders is single-
peaked consistent if there exists some axis A such that P is
single-peaked with respect to A.

We now want to extend this definition to profiles of par-
tial orders. The natural way is to consider extend the partial
orders to total orders:
Definition 2. Let P = (V1, . . . , Vn) be a profile of partial or-
ders. The profile P is single-peaked with respect to an axis A
if for every k ∈ {1, . . . , n}, Vk can be extended to a total or-
der V ′

k such that the profile of total orders P ′ = (V ′
1 , . . . , V

′
n)

is single-peaked with respect to A.
This definition is impractical since it is hard to check. A

definition based on valleys would be more preferable. This is
possible but requires the definition of u-valleys in addition to
v-valleys.
Definition 3 (u-valleys). Let V be a partial order on C. The
vote V contains a u-valley with respect to A if there exist
distinct a, b, c, d ∈ C with a < b < d and a � b as well as
a < c < d and d � c.

In Figure 2 a graphical representation of v- and u-valleys
is shown. These two types of valleys allow a characterization
of single-peakedness for profiles of partial orders.
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Figure 2: What v-valleys and u-valleys may look like.

Lemma 4. Let P = (V1, . . . , Vn) be a profile of partial or-
ders. The following two statements are equivalent.

(i) The profile P is single-peaked with respect to A.
(ii) No vote V ∈ P contains either a u-valley or v-valley

with respect to A.
Note that u-valleys cannot arise in weak orders. Thus, for

profiles of weak orders, checking for the absence of v-valleys
already suffices to verify single-peakedness.

Let T ∈ {partial order, weak order, top order, total order}
be a type of order. In this paper we are going to study the
T SINGLE-PEAKED CONSISTENCY problem, defined as fol-
lows: Given P , a profile of type T , and a set of candi-
dates C, is P single-peaked consistent? It is well known
that TOTAL ORDER SINGLE-PEAKED CONSISTENCY can
be solved in polynomial time [Bartholdi and Trick, 1986;
Doignon and Falmagne, 1994; Escoffier et al., 2008]. In the
next section, we show that this is likely not to be the case for
partial orders.

4 Hardness results
Theorem 5. The PARTIAL ORDER SINGLE-PEAKED CON-
SISTENCY problem is NP-complete.

Proof. We reduce from the NP-complete BETWEENNESS
problem [Opatrny, 1979]. A BETWEENNESS instance con-
sists of a set S and a set T containing triples of distinct el-
ements of S. The decision problem asks whether there is a
total order L such that for every triple (a, b, c) ∈ T we have
either aLbLc or cLbLa. Intuitively, a triple (a, b, c) ∈ T cor-
responds to the constraint that b has to lie “in between” a and
c on the total order L.

We construct an incomplete election (C,P) with C = S,
i.e., we identify elements in S with candidates. The prefer-
ence profile P consists of two votes for each triple (a, b, c):
the partial orders {a � c, b � c} and {b � a, c � a}. These
two votes form a valley on any axis with c between a and b
and on any axis with a between b and c. Thus b has to be
between a and c on any single-peaked axis.

The proof of Theorem 5 uses elections where the votes con-
tain very little information: only two pairs of candidates are
comparable in each vote. We know that determining single-
peaked consistency is possible in polynomial time if every
vote is a total order, i.e., all votes contain complete informa-
tion. Now the question arises: what happens if only a single
voter provides complete information. Having a single com-
pletely specified voter has been found to be helpful in a re-
lated context: it allows to efficiently elicit single-peaked pref-
erences using only few comparison queries [Conitzer, 2009]

and thus reduces the communication complexity of prefer-
ence elicitation. However, in our case such a voter does not
provide enough additional information for decrease in (com-
putational) complexity.

Theorem 6. The PARTIAL ORDER SINGLE-PEAKED CON-
SISTENCY problem is NP-complete even if the preference
profile contains a total order.

Proof. We reduce from SET SPLITTING: Let X be a finite
set. Given a collection C of subsets of X , is there a partition
of X into two subsets X1 and X2 such that no subset of C
is contained entirely in either X1 or X2? This problem is
NP-complete even if sets in C have cardinality 3.

Let X = {c1, . . . , cm}. For the construction, we identify
the elements of X with candidates and add an additional can-
didate x. For each set {ci, cj , ck} ∈ C with i < j < k we
introduce one vote: {ci � cj , x � ck}. In addition, we add
the vote x � cm � · · · � c1. One can show that the resulting
preference profile P is single-peaked if and only if (X,C) is
a SET SPLITTING yes-instance. The key observation is that,
on A, x separates the sets X1 and X2.

It is important to note that – in contrast to the NP-hardness
result in Theorem 5 – in this proof we make use of U-valleys
instead of V-valleys. This means in particular that this hard-
ness result does not hold for weak orders, which cannot con-
tain U-valleys. This is not incidental: in the next section, we
present a polynomial-time algorithm for weak orders.

5 The Guided Algorithm
In this section, we present a polynomial time algorithm for
profiles of weak orders. This algorithm requires a total order
to guide the placement of candidates on the axis. A (single)
complete vote contained in the profile can be used for this
task. We are able to weaken this constraint to requiring a so-
called guiding order, which is a total order that is implicitly
given in the profile.

Definition 7. A guiding order of a profile of partial orders is
a total order 〈c1 < c2 < . . . < cm〉 on C with the following
property: For each i ∈ {1, . . . ,m} it holds that there is a vote
V ∈ P such that ci is the unique last ranked candidate in
V [{ci, ci+1, . . . , cm}].

Clearly, not all profiles of partial orders possess a guiding
order. In particular the profiles constructed in the proof of
Theorem 5 do not possess one.

It is easy to verify that O(m · n) time suffices to verify
whether a profile of weak orders contains a guiding order and,
if so, to compute it. We thus consider the guiding order as part
of the input.

Theorem 8. Given a guiding order, the WEAK ORDER
SINGLE-PEAKED CONSISTENCY problem can be decided in
O(m · n) time.

We will refer to Algorithm 1, which Theorem 8 is based
on, as the Guided Algorithm. Without loss of generality, we
assume that the guiding order is 〈c1 < c2 < . . . < cm〉, i.e.,
we number the candidates based on the guiding order.
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Figure 3: Graphical representation of the conditions testing
whether ci can be placed on the right-hand side ((R1), (R2))
or on the left-hand side ((L1), (L2))

The algorithm has a simple structure: The first (smallest)
candidate in the guiding order is placed on the rightmost po-
sition of the axis (The leftmost position would work as well.)
Starting with the second candidate in the guiding order, the
candidates are successively placed on the axis – either at the
leftmost or rightmost still available position. The lists AL

andAR correspond to the left-hand and right-hand side of the
axis. For each candidate, we test whether it can be placed on
the right-hand side or left-hand side without creating a valley.
If only one of these options is viable, the candidate is placed
accordingly. If both left and right are possible, we place the
candidate arbitrarily right. If neither is possible, the prefer-
ence profile is not single-peaked.

Testing whether a vote Vk imposes restrictions on the
placement of a candidate is achieved by four conditions.
These conditions distinguish four categories of candidates:
candidates in AR, candidates in AL, candidates that have
not yet been placed (C>i = {ci+1, . . . , cm}) and the can-
didate that is currently under consideration (ci). We are only
checking for valleys that include ci. This gives rise to these
four conditions: (R1) and (R2) test whether placing ci on the
right-hand side of the already placed candidates leads to val-
leys, (L1) and (L2) do the same for the left-hand side. Re-
fer to Figure 3 for a graphical representation. Since we only
consider weak orders, we do not have to consider every can-
didate triple possibly fulfilling these conditions but have to
check only maximal or minimal candidates. More specif-
ically, checking whether there is a candidate c ∈ AL and
c′ ∈ C>i with c � c′ is equivalent to whether any maximal
element in AL is preferred to some minimal element in C>i.
Let mink(X) (maxk(X)) denote a function that picks an ele-
ment that is minimal (maximal) with respect to �k in X .

ci �k mink(C>i) and maxk(AL) �k mink(C>i) (R1)
maxk(C>i) �k ci and maxk(AR) �k ci (R2)
ci �k mink(C>i) and maxk(AR) �k mink(C>i) (L1)
maxk(C>i) �k ci and maxk(AL) �k ci (L2)

Using these four definitions, we can give a succinct de-
scription of the algorithm (Algorithm 1). Theorem 8 claims
that the Guided Algorithm requires O(m · n) time. This is
only possible if the conditions can be checked in constant
time. Thus, the minima and maxima have to be computable
in constant time. For maxk(AL) and maxk(AR) this is eas-
ily possible by storing and updating these two values. If ci is

Algorithm 1: The Guided Algorithm

1 AL ← 〈〉; AR ← 〈c1〉
2 for i← 2 . . .m do
3 right← true; left← true
4 for k ← 2 . . . n do
5 if Condition (R1) or (R2) holds then
6 right← false
7 if Condition (L1) or (L2) holds then
8 left← false
9 if right = true then

10 AR ← 〈ci < AR〉
11 else
12 if left = true then
13 AL ← 〈AL < ci〉
14 else
15 return not single peaked
16 return AL < AR

placed left, we update maxk(AL) in case ci is the new max-
imum (with respect to �k); if ci is placed right, we proceed
analogously maxk(AR). For computing a minimal value of
C>i, observe that the set C>i becomes smaller with increas-
ing i. Thus, a minimal value of C>i might disappear at some
point and a new (larger) value has to be chosen. The new
minimum is the smallest element (with respect to �k) in C>i

that is at least as large as the old minimum. The amortized
cost of this update procedure is O(1). A maximal value of
C>i can be found analogously.

The Guided Algorithm achieves a polynomial runtime due
to two restrictions: it requires a guiding order and it is limited
to weak orders. In the next section, we will consider profiles
that do not have a guiding order.

6 The Unguided Algorithm
We now present a second polynomial-time algorithm (Algo-
rithm 2). In contrast to the Guided Algorithm, this one is
not dependent on a guiding order and we therefore refer to
it as the Unguided Algorithm. The Unguided Algorithm is
restricted to top orders. We also require the input preference
profile to be connected: Let us consider the ranked candidates
in a top order to be a hyperedge of a graph with candidates
as vertices. A profile of top orders is called connected if this
graph has only one connected component. This restriction
does not limit the applicability: If two or more connected
components exist in this graph, we can use the algorithm for
each component (i.e., its respective candidates and votes) and
concatenate the resulting axes in arbitrary order.

The algorithm works as follows: First, we choose a candi-
date cstart which is going to be the leftmost candidate on the
axisA. Since we have no guiding order, each candidate might
be at the leftmost position. Hence we loop over all candi-
dates (Line 1). The corresponding axis under construction is
A = 〈cstart〉. We now aim to complete this axis by adding can-
didates to the right in a way that all votes are single-peaked
with respect to this axis. To this end we employ the loop in
Line 3. In this loop (variable i) we infer from the already
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Algorithm 2: The Unguided Algorithm

1 foreach cstart ∈ C do
2 A← 〈cstart〉
3 for i← 1 . . .m do
4 foreach V ∈ VotesWithPeak(ai) do
5 if A⊕ V = incompatible then
6 Continue with next cstart ∈ C in Line 1.
7 else
8 A← A⊕ V
9 if |A| = i and i < m then

10 V ←IntersectingVote(A)
11 if ai /∈ V then
12 Continue with next cstart ∈ C in Line 1.
13 x← new candidate not in C
14 C ′ ← {c ∈ V | c � ai} ∪ {ai, x}
15 S ← ∅
16 for k ← 1 . . . n do
17 V ′

k ← ReplTop(Vk, C \ (A ∪ C ′), x)
18 S ← S ∪ {V ′

k[C ′]}
19 A′ ←GuidedSP(S, V [C ′], ai, x)
20 if A′ =not single peaked then
21 Continue with next cstart ∈ C in Line 1.
22 else
23 A← A⊕A′[C ′ \ {x}]
24 return A
25 return not single peaked

placed candidate ai (the i-th candidate on A from left) the
candidate ai+1 (or even more candidates further to the right).

The Lines 4 to 8 are based on the following observation:
Let us assume that at a certain point A = 〈c1 < c2 < c3〉
and V = 〈c3 � c2 � c4 � c5〉 ∈ P . Since c3, the peak of
V , is already contained in A, there is only one compatible
extension ofA: 〈c1 < c2 < c3 < c4 < c5〉. We formalize this
extension operation with the ⊕ operator:
Definition 9. Let A be an incomplete axis and V a top or-
der. Furthermore, let V [C \ A] =

〈
c′1 � c′2 � . . . � c′j

〉
. We

define A ⊕ V =
〈
A < c′1 < c′2 < . . . < c′j

〉
if V is single-

peaked with respect to this axis and A ⊕ V = incompatible
otherwise.

The loop in Line 4 enumerates all votes with peak ai
(VotesWithPeak(ai)). Let V ∈ VotesWithPeak(ai).
If A ⊕ V = incompatible then A cannot be extended to
a complete (single-peaked) axis and we consider the next
cstart ∈ C in Line 1. Otherwise, we obtain a new incomplete
axis A← A⊕ V .

It might be the case that the candidate ai+1 has not yet
been determined after these steps. The Lines 9 to 23 deal
with this case. Since the election is connected there has
to be at least one vote that contains both a candidate on A
and a candidate that has not been placed yet. The procedure
IntersectingVote in Line 10 returns such a vote V with
A∩V 6= ∅ and V \A 6= ∅. Clearly, for such a vote V it holds
that peak(V ) /∈ A. If this vote does not contain ai, A cannot
be extended to a single-peaked axis.

Now that we have such an intersecting vote V with ai ∈ V ,
we employ the Guided Algorithm to find a further extension
of A. The main idea is to use V as a guiding order and find
an axis for the candidates in {c ∈ V | c � ai}. In principle,
this axis can be found independently of the existing axis A.
However, the leftmost and rightmost candidates have to be
chosen with regard to “external” considerations: The leftmost
candidate has to be ai, otherwise the axes A and A′ could not
be merged. For the rightmost candidate, we have to consider
votes with candidates that are not being placed on the axis in
this step. The following example illustrates the issue.

Example. Let A = 〈c1〉, V1 = 〈c2 � c3 � c1〉 and V2 =
〈c3 � c4〉. The vote V1 intersects A and hence C ′ =
{c1, c2, c3}. We employ the Guided Algorithm and might ob-
tain A′ = 〈c1 < c3 < c2〉. 1 Now observe that A ⊕ A′ = A′

can no longer be extended in a way that it is single-peaked for
V2. This would have been possible if c3 had been chosen as
the rightmost candidate in A′.

As we see from this example, we sometimes have to
“force” the rightmost candidate in A′. We do this by adding
an additional candidate x to every vote (Line 16 to 18). It
is placed at the position of the highest ranked candidate in
each vote that is not contained in A ∪ C ′. This is done by
the ReplTop function: ReplTop(V,D, x) replaces the one
candidate in vote V with candidate x that is the highest ranked
of the candidates in D. By forcing this element X to be the
rightmost candidate, we ensure that A′ is chosen under con-
sideration of all votes with ranked candidates not in C ′.

Example (continued). We apply ReplTop to the votes V1
and V2. The vote V ′

1 = 〈c2 � c3 � c1〉 since ReplTop re-
places a bottom candidate. The vote V ′

2 = 〈c3 � x〉. Now,
we can only obtain the axis 〈c1 < c2 < c3 < x〉.

The set S, as computed in Lines 15 to 18, is the election P
restricted to C ′ together with the additional candidate x. We
now employ GuidedSP(S, V [C ′], A′, ai, x) which means
that we employ the Guided Algorithm for the profile S and
guiding order V [C ′]. Furthermore, we require that the left-
most candidate on the axis is ai and the rightmost is x. The
function GuidedSP either returns not single peaked
or an axis A′. If it returns not single peaked, the next
cstart ∈ C is considered (Line 1). Otherwise, we continue with
the extended axis A← A⊕A′.

Theorem 10. The TOP ORDER SINGLE-PEAKED CONSIS-
TENCY problem can be solved in O(m2 · n) time.

Proof. The main loop (Line 1) iterates over all m candidates.
The loop in Line 4 iterates over every vote at most once. Con-
sequently, the⊕ operator is applied at mostm·n times. Since
A⊕ V can be computed in O(m) time, the Lines 4 to 8 have
a total runtime of O(m2 · n).

It remains to determine the runtime of the Lines 9 to 23.
Precomputation of the IntersectingVote procedure al-
lows its execution in O(m) time. This is achieved by stor-
ing two votes for each candidate c ∈ C. One of the two

1Whether we obtain this axis or 〈c1 < c2 < c3〉 depends on
whether the algorithm prefers placing candidates to the left or to
the right if both choices are possible.
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votes for c is an intersecting vote for any axis that has c at its
rightmost occupied position (assuming single-peakedness).
To find these two votes consider the set of votes for which
the sets {c′ ∈ C | c′ � c} are maximal (with respect to
⊆). If we consider a single-peaked axis, then candidates in
such a set have to form a contiguous subsequence either di-
rectly left or directly right of c. Since these sets are maxi-
mal, only two of them can exist. Consequently, we compute
these maximal sets for each candidate. If three or more exist
for one candidate, we can terminate the algorithm already at
this point. Also, if two maximal sets have a non-empty in-
tersection, the algorithm terminates. (The candidates in the
intersection would have to lie both left and right of c). This
precomputation step requires O(m2 · n) time. However, the
IntersectingVote procedure only has to choose from
two votes and thus requires only O(m) time.

The set S can be generated in O(|C ′| · n) time, as well as
applying GuidedSP (Theorem 8). Observe that after apply-
ing the Guided Algorithm, the candidates in C ′ are placed
on the axis. Consequently, the Guided Algorithm is applied
to sets of candidates that overlap by at most one candidate.
Hence for a fixed cstart ∈ C the total runtime of all calls of the
Guided Algorithm is in O(m · n). Taking the main loop into
account, we obtain a total runtime of O(m2 · n).

7 Experiments
In this section we want to demonstrate the practical appli-
cability of our algorithms. For this purpose we have im-
plemented both the Guided Algorithm and the Unguided
Algorithm in Java. We have generated random single-
peaked elections with n = 100, 000 (votes) and m =
10, 50, 100, 250, 500, 750, 1000 (candidates). These have
been generated by first picking an arbitrary axis and then ran-
domly generating total orders that are single-peaked with re-
spect to this axis. In these total orders we have removed in-
formation to introduce incomparability: For generating weak
orders, we have made adjacent candidates in the total orders
incomparable to one another with probability p. Testing the
Guided Algorithm implementation has shown that this prob-
ability p has no significant impact on the runtime and thus we
have chosen p to be 0.5. For generating top orders, we have
kept the top r candidates in each vote and made the remaining
candidates incomparable to one another. We have generated
top orders with (a) r = 10 and (b) r = m/3. Random in-
stances (which are likely not single-peaked) can be solved
much faster and are thus not considered here.

The runtimes (averaging 5 instances for every measuring
point) are displayed in Figure 4. The benchmarks have been
performed on a single core of an Intel Core i5-3320M CPU
with 2.60GHz using OpenJDK 7. The time required to copy
the input to the RAM is not included. (This would have dis-
torted the measurements since the input files had a size of up
to 370 MB.)

One can observe that the Unguided Algorithm has an ap-
proximately quadratic runtime in (b) but an approximately
linear runtime in (a). This is because the GuidedSP pro-
cedure is less likely to be required for large instances. Hence
only the runtime of the first part of the algorithm dominates,

0 200 400 600 800 1,000

0

30

60

90

120

av
er

ag
e

ru
nt

im
e

[s
] Unguided Alg. (a)

Unguided Alg. (b)
Guided Alg.

Figure 4: The impact of the number of candidates

which is O(m · n · r). Thus for r = 10 (a) we can observe
linear runtime and for r = m/3 (b) quadratic runtime. Our
experiments also confirmed that the number of votes has a lin-
ear impact on the runtime – this is, however, not shown in the
figure. To sum up, these benchmarks demonstrate that our
algorithms can efficiently handle even large instances with
1,000 candidates and a large number of votes.

8 Conclusions
In this paper we have analyzed the PARTIAL ORDER
SINGLE-PEAKED CONSISTENCY problem. Despite its NP-
completeness for partial orders in general, we have found
two fast algorithms for plausible application scenarios. The
Guided Algorithm requires a guiding order as additional in-
put. Such an order is likely to exist for large preference pro-
files. In the case that top orders are elicited, a guiding order
might not exist. Here the Unguided Algorithm is applicable.

We would like to mention one particular application of the
Unguided Algorithm concerning single-peaked scoring pro-
tocols. Scoring protocols are specified by a scoring vector
(α1, . . . , αm). A vote V = 〈c1, . . . , cm〉 gives α1 points to
c1, α2 points to c2, etc. The winner candidate is determined
by summing over all votes. Often scoring vectors of the type
(α1, . . . , αk, 0, . . . , 0) with α1 > . . . > αk > 0 are consid-
ered. For such scoring rules, top orders (with k ranked can-
didates) constitute full information. It is therefore debatable
whether the input may be considered to be given as a profile
of total orders. This is of relevance for single-peaked profiles.
For example, Brandt et al. [2010] study the constructive coali-
tion weighted manipulation problem for scoring protocols in
single-peaked elections. The authors consider the axis to be
part of the input (for good reasons as explained in their paper).
The computation of such an axis with existing algorithms is
possible only if preferences are specified by total orders and
thus contain problem-irrelevant information. If only relevant
information is given, i.e., the input consists of top orders, an
algorithm such as the Unguided Algorithm is required.

The work in this paper can be extended in several di-
rections. Exemplarily, we want to mention recent results
on nearly single-peaked profiles [Faliszewski et al., 2011a;
Cornaz et al., 2012; Erdélyi et al., 2013; Elkind et al., 2012;
Bredereck et al., 2013; Sui et al., 2013]. Notions of nearly
single-peakedness are robust and applicable in real-life set-
tings. Extending the algorithms presented in this work to
nearly single-peaked domains is thus of high relevance.
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