
Winner Determination in Huge Elections with MapReduce

Theresa Csar1 and Martin Lackner2 and Reinhard Pichler1 and Emanuel Sallinger2
1 TU Wien, Austria

2 University of Oxford, UK
{csar, pichler}@dbai.tuwien.ac.at

{martin.lackner, emanuel.sallinger}@cs.ox.ac.uk

Abstract

In computational social choice, we are concerned with the de-
velopment of methods for joint decision making. A central
problem in this field is the winner determination problem,
which aims at identifying the most preferred alternative(s).
With the rise of modern e-business platforms, processing of
huge amounts of preference data has become an issue. In this
work, we apply the MapReduce framework – which has been
specifically designed for dealing with big data – to various
versions of the winner determination problem. We obtain effi-
cient and highly parallel algorithms and provide a theoretical
analysis and experimental evaluation.

1 Introduction
Winner determination is a central problem in social choice.
In recent years, developing algorithms for winner determi-
nation has become an active research topic in the AI com-
munity, in particular in computational social choice. For
many of the voting rules and scenarios important in the
area, efficient algorithms have been devised (Dwork et al.
2001; Sandholm 2002; Betzler, Guo, and Niedermeier 2010;
Bachrach, Betzler, and Faliszewski 2010; Lang et al. 2012;
Caragiannis et al. 2014).

The classical example of a winner determination problem
is a political election. For political elections, the number of
votes may be large, but the number of candidates is typi-
cally small. Yet, we are facing ever increasing volumes of
preference data coming from different sources: Whether a
user watches or rates a movie on Netflix, buys or reviews a
book at Amazon or clicks a link in a listing of search results,
preferences of some alternatives over others are constantly
expressed throughout a user’s digital presence.

Unlike voting in a political election where ballots are cast,
preference data in a digital environment may be generated
without the user’s knowledge: For example, when using a
typical e-commerce site, the choice of clicking on a partic-
ular product in a list of search results is often interpreted as
a preference for that product relative to the others the user
did not access. The increasing use of sensors (e.g. through a
user’s “smart” phone or watch) further facilitates the collec-
tion of data that can be interpreted as preferences.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The reason for the huge size of preference datasets may
vary, sometimes stemming from a huge number of candi-
dates (such as in the case of search engines) or a huge num-
ber of votes (such as in the case of preferences generated
by sensors). A growth in either dimension poses challenges
to the design of parallel algorithms; sequential algorithms
and systems for winner determination cannot be expected to
handle huge preference datasets of this sort.

The most successful framework to design algorithms for
handling huge amounts of data is the MapReduce frame-
work (Dean and Ghemawat 2008), originally introduced by
Google and since then adopted by many other companies
and projects for processing “big data” in parallel – in clusters
or in the cloud. The standout characteristic of the MapRe-
duce framework is that it is both widely deployed in practice,
but also well-studied in terms of its theoretical properties.

The goal of this paper is to design and analyse algorithms
for winner determination that are able to deal with huge
datasets. To this end, we shall adopt the MapReduce frame-
work as the foundation of our algorithms.
Organization and main results. We start with brief intro-
ductions to the MapReduce framework and to computational
social choice in Sections 2 and 3, respectively. Our main
contributions, given mainly in Sections 4 – 6, are:
• We present MapReduce algorithms for four concrete vot-

ing rules (scoring rules, Schwartz, Smith, and Copeland)
and investigate their theoretical properties.

• The most involved of our MapReduce algorithms (namely
the one for computing the Schwartz set) has been imple-
mented and evaluated using the Amazon Elastic MapRe-
duce (EMR) platform. We report on these results.

• Finally, we also show limits of parallelizability, by prov-
ing that determining whether a given candidate wins an
election subject to the single-transferable voting (STV)
rule is P-complete. Thus, it is unlikely that there exists
a highly parallelizable algorithm for this problem.

With this work, we demonstrate the potential of the MapRe-
duce framework for designing efficient, highly parallel algo-
rithms for a central computational problem in social choice.

2 Basic Principles of MapReduce
MapReduce, originally developed at Google (Dean and Ghe-
mawat 2008), has evolved into a popular framework for large

scale data analytics in the cloud. A MapReduce algorithm
consists of three phases: map, shuffle, and reduce phase. In
the map phase, the input is converted into a collection of
key-value pairs. The key determines which reduce task will
receive the value. In the shuffle phase, the system sends
the key-value pairs to the respective reducers. Each reduce
task is responsible for one key and performs a simple calcu-
lation over all values it receives.
Introduction by example. We illustrate the main ideas of
MapReduce by applying it to the winner determination prob-
lem of the Borda scoring rule (see Figure 1). Every voter
provides a ranking of the candidates. Let us assume that the
candidates are {a, b, c} (e.g., a vote could be a > b > c).
The candidate ranked first receives 2 points, the second 1
point and the last 0 points. The candidate is used as the key
and the points are the corresponding values so that we obtain
key-value pairs of the form (candidate, points). Each reducer
sums up the points for one candidate. In a final, non-parallel
step all candidates with the highest score are determined.

a > b > c
b > a > c
c > a > b

Map

(a, 2)
(b, 1)
(b, 2)
(a, 1)
(c, 2)
(a, 1)

Shuffle

(a, 2)
(a, 1)
(a, 1)

(b, 1)
(b, 2)

(c, 2)

Reduce

(a, 4)

(b, 3)

(c, 2)

Figure 1: Calculation of scores for the Borda scoring rule.

Analysis of MapReduce algorithms. Various parameters
are used to analyze the performance of MapReduce algo-
rithms (Afrati et al. 2013; Leskovec, Rajaraman, and Ullman
2014). An important cost factor is the total communication
cost (denoted tcc), which is the total number of input/output
actions performed by the map and reduce tasks (recogniz-
able as emit() and return() statements in our algorithms).
It is common practice to ignore the input to the first map
task (i.e., the problem instance) and the output of the over-
all result, since they do not depend on the chosen algorithm.
Moreover, if a data item is sent by one task and received by
another task, we only count this as one input/output action.

Closely related to tcc is the replication rate (denoted rr),
which is defined as the ratio between the amount of data sent
to all reducers and the original size of the input. This corre-
sponds to the mean number of reduce tasks a value is sent
to. Another parameter of interest is the number of MapRe-
duce rounds (referred to as #rounds), which tells us how
many map-reduce iterations are performed. This parameter
is an essential indicator of how well the problem is paral-
lelizable. We also consider the number of keys (referred to
as #keys); for multi-round MapReduce algorithms, we use
the maximum number of keys in any round. Note that #keys
is a measure for the maximal possible parallelization, which
would correspond to every key being assigned to a single
(physical) machine. Finally, we will also study the wall clock
time (wct), which measures the maximum time consumed by
a single computation path in the parallel execution of the al-
gorithm (assuming that all keys are processed in parallel).

Since the predominant cost factor is the input/output, we
identify the wall clock time with the maximum number of
input/output data items in any computation path. For the in-
put data we refer to the number of candidates as m and to
the number of votes as n. Analysing the simple MapReduce
algorithm described above (which immediately generalises
to arbitrary scoring rules) gives the following result:

Proposition 1. The set of winners for scoring rules can be
computed in MapReduce with the following characteristics:
rr = 1, #rounds = 1, #keys = m, wct ≤ n + 1, and
tcc ≤ m(n + 1).

3 Elections and Winner Determination
The goal of this paper is to establish MapReduce algorithms
for the winner determination problem: given a set of can-
didates C and a list of votes, compute the set of all win-
ners according to a given voting rule. There are two relevant
dimensions that can make a problem instance “huge”: the
number of candidates (m) and the number of votes (n).

We assume that votes are partial orders, i.e., reflexive, an-
tisymmetric and transitive binary relations. As an input data
model we consider sets of total orders on subsets of candi-
dates (e.g., {a > c > d > b, a > e}), which we refer to
as preflists. They allow one to succinctly encode total orders
(i.e., a full ranking) or top orders (a partial ranking with all
remaining candidates ranked below); in both cases, preflists
requireO(m) space. For arbitrary partial orders they require
O(m2) space. This is in contrast to, e.g., (0, 1)-matrices,
which require O(m2) space independent of the given votes.

A candidate a strictly dominates b, written a � b, if there
are more votes preferring a over b than the other way around.
Similarly, a candidate a weakly dominates b, written a � b,
if the number of votes preferring a to b is greater or equal
than the other way around. Given a list of votes, it is gener-
ally not clear what candidates should be selected as choice
sets, i.e., should be chosen as winners. Probably the most
natural approach is to consider pairwise comparisons and
to declare a candidate to be the winner if it strictly domi-
nates all other candidates. Such a candidate is a Condorcet
winner – but a Condorcet winner might not exist. Hence a
large number of extensions of this concept have been pro-
posed, three of which we study in this paper: the Copeland
set, the Smith set and the Schwartz set. All these sets con-
tain only the Condorcet winner if it exists and are guaran-
teed to select at least one winner. We have selected these
three choice sets since the complexity of computing them
was shown by Brandt, Fischer, and Harrenstein [2009] to lie
in the complexity classes TC0, AC0 and NL, respectively,
and problems in these classes are considered as highly par-
allelizable (Johnson 1990).

The Copeland set is based on Copeland scores. The Cope-
land score of candidate a is defined as |{b ∈ C : a � b}| −
|{b ∈ C : b � a}|. The Copeland set is the set of candidates
that have the maximum Copeland score. The Smith set is the
(unique) smallest set of candidates that dominate all outside
candidates. The Schwartz set is the union of minimal sets
that are not dominated by outside candidates. The Smith set
is always a subset of the Schwartz set (Brandt, Fischer, and

Harrenstein 2009). We refer the reader to (Brandt, Brill, and
Harrenstein 2014) and to the handbook chapter of Brandt,
Brill, and Harrenstein (2016) for an overview on these and
other choice sets.

In addition to the aforementioned rules, we consider the
Single Transferable Vote (STV) rule, which is not based on
the dominance relation. We introduce it in Section 6.

4 MapReduce Algorithms
In this section, we present algorithms for determining the
Schwartz, Smith, and Copeland sets. Central to these three
voting rules is the (strict or weak) dominance graph, for
which we thus present a MapReduce algorithm first.

4.1 Computation of the Dominance Graph
The (strict or weak) dominance graph contains the candi-
dates as vertices and has an edge between vertices a and b if
a (strictly or weakly) dominates b. We use D� (resp. D�) to
denote the strict (resp. weak) dominance graph or simply D
if the variant of the dominance graph is clear from the con-
text or not important to the specific case. We consider the
representation of the dominance graph by an adjacency ma-
trix. Alternative representations (e.g., by a table of edges)
would yield similar results. For simplicity, we shall speak
about the (weak or strict) “dominance matrix” as a short-
hand for the “adjacency matrix of the dominance graph”.

A straightforward MapReduce algorithm for computing
the (strict or weak) dominance graph needs one map-reduce
round (with processes MapPreflists and ReduceSum) and as-
sembles the dominance matrix in a post-processing step.

MapPreflists takes as input the votes in the form of pref-
lists. It emits key-value pairs where the key (i, j) is a pair of
candidates i and j and the value is either 1 or -1 to indicate
that in some vote candidate i is preferred to j (1) or vice
versa (−1). To this end, MapPreflists processes every total
order in every preflist and, for any two candidates i, j occur-
ring in this total order, either emits ((i, j), 1) and ((j, i),−1)
(if i is preferred to j) or ((i, j),−1) and ((j, i), 1) (other-
wise).

Each ReduceSum process receives for one pair (i, j) a list
of values 1 or -1. It returns the pair (i, j) together with the
sum of these values. In the post-processing step, we assem-
ble the strict (resp. weak) dominance matrix: If the value
received for the pair (i, j) is greater than (resp. greater or
equal to) 0, then we enter value 1 at position (i, j) in the
matrix. Otherwise, we enter value 0.

Proposition 2. The MapReduce algorithm for computing
the (weak or strict) dominance graph has the following
characteristics: rr ≤ m, #rounds = 1, #keys = m2,
wct ≤ n + 1, and tcc ≤ m2(n + 1).

While the original input has size O(nm2), the size of the
resulting dominance matrix isO(m2). If n is huge but m2 is
rather small, then one can clearly use a conventional sequen-
tial algorithm to compute choice sets based on this matrix. In
contrast, if m2 is still huge, we have to further rely on par-
allelization. Our MapReduce algorithms in the subsections
below refer to this case.

4.2 Computation of the Schwartz Set
For computing the Schwartz set, we use the following alter-
native characterisation based on the strict dominance graph:
candidate a is in the Schwartz set if and only if for every
candidate b, there is a path (in the strict dominance graph)
from a to b whenever there is a path from b to a (Brandt,
Fischer, and Harrenstein 2009, Lemma 4.5). In Algorithm 1,
we present the overall structure of a MapReduce algorithm
for this computation.

Algorithm 1 Schwartz Set

FirstMap;
ReduceVertex;
while there exists a vertex with new 6= ∅ do

MapVertex;
ReduceVertex;

ComputeSchwartzSet;

The central datatype in this algorithm is VertexWritable.
It consists of three sets of vertices storing information on
incoming and outgoing edges for a given vertex a as follows:

• the set old stores all vertices that have been found previ-
ously to be reachable from a;

• the set new stores all vertices that have been found in the
last map-reduce round to be reachable from a;

• the set reachedBy stores all vertices known to reach a;

First map-reduce round. The FirstMap process handles
each row of the strict dominance matrix as follows. The key-
value pairs emitted consist of a vertex as key and a value
of type VertexSetWritable. This datatype consists of a set
of vertices plus a mode, i.e., a value from {‘old’, ‘new’,
‘reachedBy’}. More precisely, for the i-th row D[i,−],
FirstMap emits a pair (i, (set , ‘new’)) with set = {j |
D[i, j] = 1}. Moreover, for every j with D[i, j] = 1, the
mapper also emits a key-value pair (j, ({i}, ‘reachedBy’)).

In ReduceVertex, the data structure of type Ver-
texWritable is computed for the vertex specified by the in-
put key. In the first round, the set old is thus assigned
the empty set; the set new is assigned the unique input
of type VertexSetWritable with mode ‘new’; and the set
reachedBy is assigned the union of all the singletons with
mode ‘reachedBy’.
Map-reduce rounds in the while-loop. After k iterations of
the loop, the VertexWritable data structure for each vertex i
contains in the set new all vertices reachable from i via a
path of length≤ 2k but not via a path of length≤ 2k−1. The
vertices reachable via a path of length ≤ 2k−1 are stored in
set old. Finally, set reachedBy contains all vertices j, such
that i can be reached from j via a path of length≤ 2k. Anal-
ogously to FirstMap, also MapVertex (Algorithm 2) outputs
key value pairs where the key is a vertex and the value is of
type VertexSetWritable, i.e., a set of vertices together with
a mode from {‘old’, ‘new’, ‘reachedBy’}. Each MapVertex
process handles the VertexWritable data structure for one
vertex, say i. With key i, MapVertex emits both sets, old and
new with mode ‘old’, since the newly found vertices of the

previous iteration of the while-loop are old in the next itera-
tion.

For every vertex r in reachedBy as key, MapVertex emits
the whole set new with mode ‘new’. Likewise, for every ver-
tex n in new as key, MapVertex emits the set reachedBy with
mode ‘reachedBy’. In other words, the MapVertex process
handling vertex i combines the incoming paths and the out-
going paths for vertex i to get paths of length ≤ 2k+1.

ReduceVertex (Algorithm 3) receives values of type Ver-
texSetWritable for a given vertex i and updates the Ver-
texWritable data structure for i: the union of all input sets
with mode ‘reachedBy’ is assigned to the set reachedBy. The
unique input set with mode ‘old’ is assigned to the set old.
Some care is required with the set new, since an input set
with mode ‘new’ may contain vertices j from old. This hap-
pens if a path from i to j of length ` with 2k < ` ≤ 2k+1 has
been newly discovered, but there also exists a path from i to
j of length≤ 2k, which was already detected before. Hence,
we may provisionally assign to set new the union of all input
sets with mode ‘new’. But then we set new = new − old.

Algorithm 2 MapVertex

input: vertex i; VertexWritable v;
emit(i,VertexSetWritable(v.new, mode=‘new’));
emit(i,VertexSetWritable(v.old, mode=‘old’));
emit(i,VertexSetWritable(v.reachedBy,mode=‘reachedBy’));
for r in v.reachedBy do

emit (r, VertexSetWritable(v.new, mode=‘new’));

for n in v.new do
emit(n,VertexSetWritable(v.reachedBy, mode=‘reachedBy’));

Algorithm 3 ReduceVertex

input: key i, list of VertexSetWritable;
new = ∅;
old = ∅;
reachedBy = ∅;
for (set ,mode) in input-list do

if mode = ‘old’ then old = set;
if mode = ‘new’ then new = new ∪ set;
if mode = ‘reachedBy’ then reachedBy = reachedBy ∪ set;

new = new \ old;
return (i, VertexWritable(old, new, reachedBy));

Example. Suppose there are five candidates (A,B,C,D,E)
and the strict dominance graph resulting from the votes is a
chain, as shown in Figure 2. When computing the Schwartz
set the strict dominance matrix is the input to the first
MapReduce round and the reduce tasks create the initial Ver-
texWritables as output. These initial VertexWritables form
the input to the second Mapreduce round and are shown in
the first row of Figure 3.

A B C D E

Figure 2: Dominance graph in the example.

The only vertex that can be reached within one step start-
ing from A is B, and therefore the set new of candidate A
is only containing B. Candidate A cannot be reached by any
other vertex (i.e. it is not dominanted by any other candidate)
and so the set reachedBy is empty. (In the graphs reachedBy
is abbreviated to rB.) Similarly the set new of candidate B
contains C – the only candidate reachable within one step –
and the set reachedBy contains A, since A � B.

A B C D E
new = {B}
old = {}
rB = {}

new = {C}
old = {}
rB = {A}

new = {D}
old = {}
rB = {B}

new = {E}
old = {}
rB = {C}

new = {}
old = {}
rB = {D}

({A},”rB”) ({B},”rB”) ({C},”rB”)

({C},”new”) ({D},”new”) ({E},”new”)

new = {C}
old = {B}
rB = {}

new = {D}
old = {C}
rB = {A}

new = {E}
old = {D}
rB = {A,B}

new = {}
old = {E}
rB = {B,C}

new = {}
old = {}
rB = {C,D}

({A,B},”rB”)({A},”rB”)({D},”new”) ({E},”new”)

new = {D,E}
old = {B,C}
rB = {}

new = {E}
old = {C,D}
rB = {A}

new = {}
old = {D,E}
rB = {A,B}

new = {}
old = {E}
rB = {A,B,C}

new = {}
old = {}
rB = {A,B,C,D}

({E},”new”)

new = {}
old = {B,C,D,E}
rB = {}

new = {}
old = {C,D,E}
rB = {A}

new = {}
old = {D,E}
rB = {A,B}

new = {}
old = {E}
rB = {A,B,C}

new = {}
old = {}
rB = {A,B,C,D}

({A},”rB”)

Figure 3: Schwartz set algorithm by example.

In Figure 4 the second MapReduce round is illustrated
in more detail. First the map task(s) read the input files
containing VertexWritables. (The number of map tasks de-
pends on the number and the size of the input files.) For
each VertexWritable the map tasks emit key-value pairs.
The output created by the map task after reading vertex A
and B is shown in Figure 4. Vertex A results in emitting
only one key-value pair, namely (A, ({B}, ”old”)), since
the previous new set is considered to be already known
(old) in the following MapReduce round. Equivalently ver-
tex B emits the already known dominated vertex new as
old (B, ({C}, ”old”)) and passes on the set of reachedBy
values (B, ({A}, ”reachedBy”)). Additionally Vertex B
emits the information that A can reach C, it does this by
emitting the following key-value pairs: (C, ({A}, ”rB”))
and (A, ({C}, ”new”)).

In the reduce phase (see Figure 4) there is one reduce task
per candidate. Each reduce task receives all key-value pairs
with the same key. The reduce task than combines all the
received values and creates a new VertexWritable as output.
All those VertexWritables are written to files and used as in-
put to the next round. In Figure 3 the development of the
VertexWritables during the whole computation is illustrated.
The arrows illustrate emitted key-value pairs, but in favor of
readability not all of them are shown. In particular, only key-
value pairs with differing destination and source vertices are
shown. The first row contains the VertexWritables created
by the first reduce phase and are used as input to the sec-
ond map phase. Then the second row is the output of the

new = {C}
old = {}
rB = {A}

Vertex B
(B,({C},”old”))
(B,({A},”rB”))
(C,({A},”rB”))
(A,({C},”new”))

ReduceVertex B

MapVertex

(B,({C},”old”))
(B,({A},”rB”))
(B,({D},”new”))

Input

new = {B}
old = {}
rB = {}

Vertex A

Output

(A,({B},”old”))

Input

Output

new = {D}
old = {C}
rB = {A}

Vertex B

ReduceVertex A

(A,({B},”old”))
(A,({C},”new”))

Input Output

new = {C}
old = {B}
rB = {}

Vertex A

Vertex C

...
... ...

Figure 4: Input and output of the second MapReduce round.

second reduce phase and input to the third map phase and
so on. A vertex is considered as inactive as soon as the set
new is empty. The algorithm terminates when all vertices are
inactive (last row in Figure 3). ♦
Post-processing. The ComputeSchwartzSet procedure
inspects the VertexWritable data structure for every vertex
i and writes i to the output if reachedBy ⊆ old holds. Of
course, this step can be done in parallel for all vertices.

Example (continued). In the last row of Figure 3 the final
state of all Vertices is shown. Only vertex A is satisfying the
requirement reachedBy⊆ old and hence A is the only vertex
contained in the Schwartz set. ♦
Proposition 3. Algorithm 1 for computing the Schwartz
set has these characteristics: rr ≤ 2m + 1, #rounds =
dlog2me+1, #keys = m, wct = (2m2+3m)(dlog2me+1),
and tcc ≤ 2m3 + 3m2(dlog2me+ 1).

Note that we have an upper bound 2m2 + m on the input
received by each reducer, because each of the m reducers
may receive one vertex-set old and linearly many sets new
and reachedBy. The linearly many sets may arise, if new
paths from r to n via different “mid-points” i have been de-
tected. However, this does not mean that the reducer has to
handle data of size O(m2) in memory. Instead, the reducer
can iterate through these sets one by one and compute their
union with only a linearly big data structure in memory.
Moreover, tcc has upper bound O(m3), which is smaller
than m2 ·#keys ·#rounds, because the total size of all sets
reachedBy or new that may ever be emitted is bounded by the
number of possible combinations (r, i, n) ∈ {1, . . . ,m}3.

4.3 Smith Set and Copeland Set
For the computation of the Smith set, we use the following
characterization by Brandt, Fischer, and Harrenstein (2009):
candidate a is in the Smith set if and only if for every can-
didate b there is a path from a to b in the weak dominance
graph. A naive algorithm for computing the Smith set would
thus first compute the transitive closure of the weak domi-
nance graph with logarithmically many map-reduce rounds

as in Algorithm 1. However, we can do better by applying
the following property: let Dk

�(v) denote the set of vertices
reachable from vertex v by a path of length ≤ k. Brandt,
Fischer, and Harrenstein (2009) show that in the weak domi-
nance graph a vertex t is not reachable from a vertex s if and
only if there exists a vertex v such that D2

�(v) = D3
�(v),

s ∈ D2
�(v), and t /∈ D2

�(v).
A high-level description of a MapReduce algorithm for

the Smith set is given in Algorithm 4. The algorithm con-
sists of three map-reduce rounds plus a post-processing step
realized by procedure ComputeSmithSet.

Algorithm 4 Smith Set

FirstMap;
ReduceVertex;
MapVertex;
ReduceVertex;
MapVertex;
ReduceComplement;
ComputeSmithSet;

The first two rounds as well as the map phase in the
third round are precisely as in the Schwartz-Set algorithm.
The ReduceComplement process takes the same input as
ReduceVertex, i.e., values of type VertexSetWritable for a
given vertex i. ReduceComplement consists of two phases:
first, we check if i is a vertex of kind v in the Smith set
characterization recalled above, i.e., the input set with mode
‘old’ must not contain all vertices and all input sets with
mode ‘new’ must be subsets of the one with mode ‘old’.
Strictly speaking, we thus check if D2

�(v) = D4
�(v) holds.

Of course, this is equivalent to checking D2
�(v) = D3

�(v).
If i indeed is a vertex of kind v, then ReduceComplement

outputs all vertices in the set with mode ‘old’, i.e., all ver-
tices reachable from v. Otherwise, ReduceComplement out-
puts nothing. In other words, ReduceComplement outputs
all vertices which (by the above criterion) have been found
to be not in the Smith set. The procedure ComputeSmithSet
then computes the Smith set as the complement of the union
of the sets of vertices thus received.

Proposition 4. Algorithm 4 for computing the Smith set has
the following characteristics: rr ≤ 2m + 1, #rounds = 3,
#keys = m, wct ≤ 6m2 + 8m and tcc ≤ 6m3 + 8m2.

We conclude this section by briefly discussing the com-
putation of the Copeland set. It just needs one map-reduce
round, where each reducer is responsible for computing the
Copeland score of one candidate. In the map phase, we send
the row and column relevant to a candidate to the corre-
sponding reducer. The entries in the column sent to the re-
ducer are multiplied by -1 as they correspond to the candi-
dates that dominate the candidate under consideration. Each
reducer then simply sums up the values of the row and the
(negative) values of the column to get the Copeland score
of the corresponding candidate. Finally, in a simple post-
processing step, the maximum value of the Copeland scores
is computed and the candidates with maximum Copeland
score are returned as the Copeland set.

Proposition 5. The Copeland set can be computed by a
MapReduce algorithm with the following characteristics:
rr = 2, #rounds = 1, #keys = m, wct ≤ 2m + 2, and
tcc ≤ 2m2 + 2m.

5 Experimental Evaluation
We implemented our approach to winner determination in
Java using the Amazon Elastic MapReduce (EMR) platform.
Amazon EMR provides a managed Hadoop framework, an
open-source implementation of MapReduce. For this evalua-
tion, we chose to focus on the Schwartz set, as it is the most
complex of the algorithms described in this paper, and the
theoretical analysis in the previous section showed that it is
the hardest. (We also implemented the Smith and Copeland
algorithms as well as dataset generators suited for all our
winner determination algorithms.) The goal of our evalua-
tion is to demonstrate that (i) the algorithm for computing
the Schwartz set is practicable and, importantly, (ii) that it
scales in practice, i.e., that given larger and larger problem
instances, one can achieve reasonable times for determining
the winners of these elections by using an appropriate num-
ber of computation nodes. Our implementation is available
as open-source software1, as is the code for generating the
datasets and running the code on EMR.
Setup. In our experiments, we utilize Amazon EMR which
uses the Amazon Elastic Compute Cloud (EC2) to pro-
vide computation resources. The nodes in an EC2 cluster
are called instances, of which Amazon EC2 offers various
kinds. In the results reported here, we utilize m3.xlarge
instances, but note that tests with other types of instances did
not yield substantially different results with regard to scal-
ability. We use up to 128 of such instances. The times we
report in this section are measured from the start of the first
MapReduce round to the end of the final MapReduce round.
Datasets. As our main goal of the evaluation is to show
practicability and scalability, we utilize synthetic datasets.
For a desired number m of candidates, we randomly gen-
erate dominance graphs with a certain number of edges uti-
lizing DigraphGenerator (Sedgewick and Wayne 2016): We
use two kinds of datasets, sparser ones with 10m edges and
denser ones with m2/10 edges. In the times we report in
this section, for each number of candidates, we generate five
different instances for the 10m edges graphs, and report the
average of the times measured to generate the winner set.
For the m2/10 edge graphs, we generate only one dataset
per number of candidates to limit the cost incurred by the
experiments. The datasets used to generate our results will
be provided as open data.
Schwartz set. Run times for computing the Schwartz set
(as described in Section 4.2) are shown in Figure 5 for the
sparser (10m edges) datasets, with the number of candidates
ranging from 1000 to 7000 and with 1 + 2 to 1 + 32 EC2 in-
stances (1 control instance and x worker instances). A time-
out of 60 minutes was used for this experiment. We see that
the time incurred falls below 20 minutes once 1+16 EC2 in-
stances are used, and below 15 minutes for 1 + 32 instances.

1https://github.com/theresacsar/BigVoting

Figure 5: Time for the computation of the Schwartz Set with
10m edges using up to 1 + 32 instances.

Figure 6: Time for the computation of the Schwartz Set with
m2/10 edges using up to 1 + 128 instances.

The times for the denser (m2/10 edges) graphs is shown
in Figure 6, also between 1000 to 7000 candidates, but with
up to 1 + 128 EC2 instances. As Figure 6 shows, the run-
times are higher for the denser graphs, but the general pic-
ture remains the same. A timeout of 90 minutes was used for
this experiment. We see that the time incurred falls below 40
minutes for most inputs once 1 + 64 EC2 instances are used
and below 20 minutes once 1 + 128 EC2 instances are used.

Most importantly, we see that the implementation scales:
We see that utilizing a larger number of EC2 instances sig-
nificantly decreases the computation time. Note that the
main memory consumption used in the EC2 instances re-
mains O(m), i.e., relative to the number of candidates, and
not O(m2). This is essential for scalability, as otherwise
main memory size would become a hidden limit for scal-
ability, not obvious in Figures 5 and 6.

Discussion. It is to be noted that the size of problem in-
stances under consideration (with m ≤ 7000) is not yet in
the usual order of magnitude of “big data”; our instances
have a size of megabytes rather than gigabytes. Further work
is therefore necessary to improve our algorithms and imple-
mentations to push the practical boundaries of our approach.

Nonetheless, we demonstrate with our experiments that our
algorithms indeed benefit from an increase in parallelization,
i.e., a significant decrease in the run time can be observed
when the number of processors (instances) is increased.

6 Limits of Parallelizability
In this section we study the Single Transferable Vote (STV)
rule as an example of a voting rule that allows for only lim-
ited parallelization. STV is defined as follows: Every voter
provides a total order of all m candidates. In each round the
candidate that is ranked first in the least number of votes
is removed from each vote. The remaining candidate after
m − 1 rounds is the winner. In case of ties we assume that
a tie-breaking order is given. In the following we will show
that STV is in general difficult to parallelize effectively. In-
deed, the decision problem STV-WINNER, asking whether
a given candidate is the winner, is P-complete and therefore
considered as inherently sequential (Johnson 1990).

Theorem 6. STV-WINNER is P-complete.

Idea. Since this proof requires an intricate construction, we
can only provide the main idea. P-hardness is shown by re-
duction from the BOOLEAN CIRCUIT EVALUATION prob-
lem (Greenlaw, Hoover, and Ruzzo 1995). Given a Boolean
circuit with m gates g1, . . . , gm, where gm is the output gate,
we construct an instance of STV-WINNER with 2m candi-
dates C = {c1, c̄1, c2, c̄2, . . . , cm, c̄m}. The set of votes is
defined such that, in the first m rounds, one of ci and c̄i
is eliminated for every i ∈ {1, . . . ,m}, namely: ci is re-
tained if and only if gate gi evaluates to true. In the next
m−1 rounds, the remaining candidates are eliminated in as-
cending order of their indices. Hence, cm is the STV-winner
if and only if gate gm (and hence the circuit) evaluates to
true.

The next theorem shows that only the number m of can-
didates is the source of P-completeness; the number n of
voters is not an obstacle to parallelization.

Theorem 7. STV-WINNER can be solved inO(m+log(n))
space.

Proof. We require the following variables to be kept
in memory: the current vote under consideration (i ∈
{1, . . . , n}), the current candidate cj (j ∈ {1, . . . ,m}),
the current score of candidate cj (s ∈ {1, . . . , n}), the
minimum score of the preceding candidates c1, . . . , cj−1
(t ∈ {1, . . . , n}), the candidate having this minimum score
cj′ (j′ ∈ {1, . . . , n}) and the set of candidates that have
already been removed A ⊆ C. The algorithm starts with
i = 1, j = 1, j′ = 0, s = 0, t = +∞ and A = ∅. We repeat
the following steps m−1 times: For every candidate cj /∈ A
we compute the score of cj by verifying for each vote Vi

whether cj is the highest ranking candidate not contained in
A; if yes, we increase s by 1. If s is smaller than t (that is,
we assume lexicographic tie-breaking), we set t ← s and
j′ ← j. Once this has been done for every candidate, we
add candidate cj′ to A, and set i = 1, j = 1, j′ = 0, s = 0
and t = +∞. The remaining candidate after m−1 iterations
is the winner. The space requirements of this algorithm are

log(n) for the variables i, s, t, log(m) for the variables j, j′
and m for the set A.

From the perspective of classical complexity theory, we have
shown that STV-WINNER is contained in L (i.e., it can be
solved with logarithmic space), if we fix m to a constant.
Membership in L can be seen as evidence that a problem is
parallelizable as it can be computed in log2 time with a poly-
nomial number of parallel processors. Theorem 7 can also
be seen from the perspective of parameterized space com-
plexity (Elberfeld, Stockhusen, and Tantau 2014). Our result
translates to a para-L membership proof for STV-WINNER
with parameter m, which requires that the problem can be
solved in O(f(m) + log(n)) space for some computable
function f . Note that para-L containment is a stronger result
than L membership for fixed m since the latter would also
hold, for instance, for a space complexity of O(m · log(n)).

To support Theorem 7, we briefly sketch and analyze a
MapReduce algorithm for STV winner. The basic idea is
to use m − 1 rounds and exclude one candidate per round.
Each reducer is responsible for one candidate. During the
map phase, the highest-ranking not-yet-excluded candidate
of each vote is sent to the corresponding reducer, which sim-
ply counts the number of received messages. The next round
starts with the exclusion list extended by the lowest scoring
candidate (subject to tie-breaking). Clearly, this algorithm is
impractical for large m as it requires m − 1 rounds. How-
ever, for small m, this algorithm can be considered feasible
– which matches exactly the claims of Theorems 6 and 7.

Proposition 8. For computing STV, we obtain the following
characteristics: rr = 1, #rounds = m − 1, #keys ≤ m,
wct ≤ (m− 1)(n + 1), and tcc ≤ (m+2)(m−1)

2 · (n + 1).

7 Conclusion
This paper presents parallel algorithms for winner deter-
mination problems using the popular MapReduce frame-
work, which are particularly useful in a situation where m2

is “large” (e.g., the full dominance graph cannot be stored
and processed in memory by a single machine), but m is
still manageable, which is a reasonable assumption for most
huge datasets. The main characteristics of our algorithms are
summarized in Table 1. Our experimental results reported
in Section 5 are promising: the current data clearly shows
speed ups when increasing the number of machines. Also,
the speed up rate increases for larger instances, i.e., paral-
lelization is more beneficial when it is needed most.

To the best of our knowledge, this paper is the first to
apply MapReduce or related techniques to problems from
computational social choice. As a consequence, many direc-
tions for future research are left to be explored. First, there
are many more voting rules to be investigated for their par-
allelizability. For some of them, such as the Kemeny rule,
winner determination is NP-hard (Bartholdi III, Tovey, and
Trick 1989; Hemaspaandra, Spakowski, and Vogel 2005)
and thus is unlikely to allow for practical parallel compu-
tation. However, heuristic algorithms (Dwork et al. 2001;
Davenport and Kalagnanam 2004) might be parallelizable.

Problem Input Input Size #keys rr #rounds wct tcc
Scoring rules total orders O(mn) m 1 1 n + 1 m(n + 1)
Dom. graph partial orders O(nm2) m2 m 1 n + 1 m2(n + 1)
Schwartz set dom. graph O(m2) m 2m + 1 dlog2 me+ 1 O(m2 logm) O(m3)
Smith set dom. graph O(m2) m 2m + 1 3 6m2 + 8m 6m3 + 8m2

Copeland set dom. graph O(m2) m 2 1 2m + 2 2m2 + 2m

STV total orders O(mn) m 1 m− 1 (m− 1)(n + 1) (m+2)(m−1)
2 · (n + 1)

Table 1: Summary of performance characteristics of our MapReduce algorithms.

Winner determination is a central but not the only algo-
rithmic problem considered in computational social choice.
Further topics include committee selection, judgment aggre-
gation and problems of fair division. On the other hand,
MapReduce is only one of many frameworks proposed for
parallel computation. Another research direction is to ex-
plore the applicability of other cloud computing technolo-
gies, in particular Pregel, as well as the flexibility offered by
Apache Spark and GraphX.

Acknowledgments
This work was supported by the Vienna Science and
Technology Fund (WWTF) through project ICT12-015,
by the Austrian Science Fund projects (FWF):P25207-
N23, (FWF):P25518-N23 and (FWF):Y698, by the Eu-
ropean Research Council (ERC) under grant number
639945 (AC-CORD) and by the EPSRC programme grant
EP/M025268/1.

References
Afrati, F. N.; Sarma, A. D.; Salihoglu, S.; and Ullman, J. D.
2013. Upper and lower bounds on the cost of a map-
reduce computation. Proceedings of the VLDB Endowment
6(4):277–288.
Bachrach, Y.; Betzler, N.; and Faliszewski, P. 2010. Prob-
abilistic possible winner determination. In Proceedings of
AAAI-10. AAAI Press.
Bartholdi III, J.; Tovey, C. A.; and Trick, M. A. 1989. Voting
schemes for which it can be difficult to tell who won the
election. Social Choice and Welfare 6(2):157–165.
Betzler, N.; Guo, J.; and Niedermeier, R. 2010. Parameter-
ized computational complexity of dodgson and young elec-
tions. Information and Computation 208(2):165–177.
Brandt, F.; Brill, M.; and Harrenstein, P. 2014. Extending
tournament solutions. In Brodley, C. E., and Stone, P., eds.,
Proceedings of the Twenty-Eighth AAAI Conference on Arti-
ficial Intelligence, July 27 -31, 2014, Québec City, Québec,
Canada., 580–586. AAAI Press.
Brandt, F.; Brill, M.; and Harrenstein, P. 2016. Tournament
solutions. In Brandt, F.; Conitzer, V.; Endriss, U.; Lang, J.;
and Procaccia, A., eds., Handbook of Computational Social
Choice. Cambridge University Press.
Brandt, F.; Fischer, F.; and Harrenstein, P. 2009. The com-
putational complexity of choice sets. Mathematical Logic
Quarterly 55(4):444–459.

Caragiannis, I.; Kaklamanis, C.; Karanikolas, N.; and Pro-
caccia, A. D. 2014. Socially desirable approximations for
Dodgson’s voting rule. ACM Transactions on Algorithms
(TALG) 10(2):6.
Davenport, A., and Kalagnanam, J. 2004. A computational
study of the kemeny rule for preference aggregation. In Pro-
ceedings of AAAI-04, volume 4, 697–702.
Dean, J., and Ghemawat, S. 2008. Mapreduce: simplified
data processing on large clusters. Communications of the
ACM 51(1):107–113.
Dwork, C.; Kumar, R.; Naor, M.; and Sivakumar, D. 2001.
Rank aggregation methods for the web. In Proceedings of
WWW-01, 613–622. ACM Press.
Elberfeld, M.; Stockhusen, C.; and Tantau, T. 2014. On
the space and circuit complexity of parameterized problems:
Classes and completeness. Algorithmica 71(3):661–701.
Greenlaw, R.; Hoover, H. J.; and Ruzzo, W. L. 1995. Lim-
its to parallel computation: P-completeness theory. Oxford
University Press.
Hemaspaandra, E.; Spakowski, H.; and Vogel, J. 2005. The
complexity of Kemeny elections. Theoretical Computer Sci-
ence 349(3):382–391.
Johnson, D. S. 1990. A catalog of complexity classes. In
Handbook of Theoretical Computer Science, Volume A: Al-
gorithms and Complexity (A). 67–161.
Lang, J.; Pini, M. S.; Rossi, F.; Salvagnin, D.; Venable,
K. B.; and Walsh, T. 2012. Winner determination in voting
trees with incomplete preferences and weighted votes. Au-
tonomous Agents and Multi-Agent Systems 25(1):130–157.
Leskovec, J.; Rajaraman, A.; and Ullman, J. D. 2014. Min-
ing of Massive Datasets, 2nd Ed. Cambridge University
Press.
Sandholm, T. 2002. Algorithm for optimal winner deter-
mination in combinatorial auctions. Artificial intelligence
135(1):1–54.
Sedgewick, R., and Wayne, K. 2016. Algorithms (Fourth
edition deluxe). Addison-Wesley.

