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Several variants of Multicut problems arise in applications like circuit and
network design. In general, these problems are NP-complete. The goal
of our work is to investigate the potential of clique-width for identifying
tractable fragments of Multicut. We show for several parameterizations in-
volving clique-width whether they lead to tractability or not. Since bounded
tree-width implies bounded clique-width, our tractability results extend pre-
vious results via tree-width, in particular to dense graphs.

1 Introduction

Multicut problems are graph problems with many applications to circuit and network
design, telecommunication, and recently even databases [15]. An instance of a Multicut
problem is given by an undirected graph G and a set H of pairs of so-called terminal
vertices. The aim is to find a minimum cut that separates all terminal pairs. Different
kinds of cuts are considered. For the Edge Multicut (EMC) problem, the cut is a
set of edges whose removal disconnects each terminal pair. In case of the Restricted
(resp. Unrestricted) Vertex Multicut problem (RVMC resp. UVMC), the cut is a
set of non-terminal (resp. arbitrary) vertices. All three variants of Multicut problems are
intractable, i.e. the corresponding decision problems (asking if a cut of a given cardinality
exists) are NP-complete. RVMC and EMC remain NP-hard even on trees [2, 7].

An important approach in dealing with intractable problems is to search for fixed-
parameter tractability in order to confine the combinatorial explosion to certain problem
parameters. More formally, we say that a problem is in the class FPT with respect to
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Table 1: (Parameterized) Complexity of Multicut problems for various pa-
rameters

Graph classes UVMC RVMC EMC

Interval graphs NP-c [13] P [13] NP-c [11]
Trees P [13] NP-c [2] NP-c [11]
Cographs NP-c (Thm 3.1) P (Thm 3.4) NP-c [11]3

Parameters1 UVMC RVMC EMC

m, |H| FPT [19] FPT [19] FPT [19]
m FPT [1, 20] FPT [1, 20] FPT [1, 20]
tw(G) NP-c [2] NP-c [2] NP-c [11]
tw(G ∪H) FPT [12] FPT [12] FPT [12]
tw(G), |H| FPT [13] FPT [13] FPT [13]
|H| NP-c [19] NP-c [13] NP-c [7]

cw(G) NP-c (Thm 3.1) NP-c [2]4 NP-c [11]3

cw(G ∪H) NP-c (Cor 3.2) FPT2 (Thm 4.5) NP-c (Thm 3.3)
cw(G), |H| FPT (Thm 4.3) FPT (Thm 4.3) XP (Section 4.3)

1 NP-c refers here to NP-completeness even if the parameter value is fixed
by a constant.

2 For graphs without edges between terminal vertices (cf. Section 4.2).
3 Follows from NP-hardness of EMC on stars (trees of height 1) [11].
4 Follows from NP-hardness of RVMC on trees [2].

a parameter k, if the problem is solvable in time f(k) · nO(1), where n denotes the size
of the input instance. The function f is usually exponential but only depends on k.
The related complexity class XP contains the problems solvable in time O(ng(k)) where
function g depends only on the parameter k. In general algorithms with FPT runtime
are clearly preferable to those with XP runtime. In Table 1 we recall previous complexity
results on various parameters of Multicut problems. For several parameters, like the size
m of the cut plus cardinality |H| [19] and very recently even the size m alone [1, 20],
FPT membership could be shown. Also several parameterizations involving tree-width
(a parameter which measures the “tree-likeness” of a graph), like the tree-width of the
structure representing both G and H (denoted by tw(G ∪ H)) [12] and the tree-width
of G plus |H| [13], lead to FPT membership. In contrast, for some other parameters it
was shown that the Multicut problems remain NP-complete even if the parameters are
bounded by a constant. This is the case for a parameterization with tw(G) alone [2] and
with |H| alone [7, 13, 19].

We recall that all previous FPT algorithms based on tree-width are only applicable to
sparse graphs. To identify FPT fragments of Multicut which additionally apply to dense
graphs, we study here the parameter clique-width. Clique-width generalizes the class of
cographs similarly as tree-width generalizes trees. A formal definition of clique-width is
given in Section 2. Many graph classes are known to have bounded clique-width, such
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as cliques, cographs, trees, tree-cographs, probe cographs, distance-hereditary, P4-red-
ucible, and series-parallel graphs. Hence, all fixed-parameter tractability results w.r.t.
clique-width immediately yield tractability for these graph classes. Moreover, recall the
following important connection between clique-width and tree-width (shown in [3], im-
proving a result from [6]). For every graph G, cw(G) ≤ 3 · 2tw(G)−1 + 1 holds. Hence,
our tractability results strictly extend previous ones that are based on tree-width. Fur-
thermore, by the relationship between clique-width and rank-width proved in [21], both
our NP-completeness results and our tractability results immediately carry over to rank-
width.

Our main results, as summarized in the lower part of Table 1, are as follows:
• NP-completeness results. The NP-completeness of Multicut parameterized by tree-
width tw(G) carries over to parameter cw(G) by the relationship of tw(G) and cw(G)
recalled above. However, this leaves a gap for Multicut instances with small clique-width.
We fill this gap by extending NP-completeness to these cases, with the notable exception
of RVMC, which we show to be tractable on graphs with cw(G) ≤ 2. Completely new
NP-hard cases arise for UVMC and EMC with respect to the parameter cw(G ∪H), as
opposed to the parameter tw(G ∪H) for which both problems are in FPT.

• FPT results. We prove the FPT membership of UVMC and RVMC with respect to
the parameter cw(G) + |H|. Under a weak additional assumption, RVMC is also shown
to be in FPT with respect to cw(G∪H). It is noteworthy that these FPT results can also
be obtained by exploiting the Monadic Second-Order logic (MSO) characterizations of
UVMC and RVMC and by applying the clique-width metatheorem from [5]. However, by
designing concrete algorithms we are able to show better upper bounds for the runtime.
The presented algorithms have a runtime that is double-exponential in cw(G) but only
single-exponential in |H|. Furthermore, the runtime depends only linearly on the input
size. These algorithms are therefore tailored for large instances with small clique-width
and a moderate number of terminal pairs. Note that graphs of small clique-width can
have unbounded tree-width. This makes our algorithms more versatile than those based
on tree-width.

2 Preliminaries

For a set S and n ∈ N, we write S[n] to denote the set of all subsets of S with cardinality
n, formally S[n] := {S′ ⊆ S : |S′| = n}. For a set of sets S, the union of S, denoted

⋃
S,

is defined as {a : ∃B ∈ S with a ∈ B}. We consider here finite simple undirected graphs
and refer to edges via two-element subsets of V . An induced subgraph (by a vertex set
V ′) is denoted as G[V ′].

An instance of a Multicut problem is given by a triple (G,H,m), where G :=(VG, EG)

is a graph, H ⊆ V
[2]
G is a set of terminal pairs, and m is a non-negative integer. We

write VH :=
⋃
H ⊆ VG to denote the terminal vertices or terminals in such a problem.

The Multicut problem asks if a cut of size at most m exists, which separates all terminal
pairs. In case of the {UVMC, RVMC, EMC} problem, a cut is a set of {arbitrary
vertices, non-terminal vertices, edges}. A solution graph is a valid graph that remains
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Figure 1: The graph GEx and its 3-expression.

after “cutting”.
Clique-width is a graph property introduced in [4]. For a formal definition of clique-

width we require k-expressions. Each k-expression s has a corresponding (labeled) graph
G(s), which is obtained by the following construction (k ∈ N):

• Adding a new vertex. Let v be a vertex and i ∈ {1, ..., k} a label. Then i(v) is a
k-expression and G(i(v)) consists of the vertex v labeled with i.

• Renaming labels. Let i, j ∈ {1, ..., k} be labels with i 6= j and let s be a k-ex-
pression. Then ρj←i(s) is a k-expression and G(ρj←i(s)) is obtained by re-labeling
each i-labeled vertex in G(s) with j.

• Connecting vertices. Let i, j ∈ {1, ..., k} be labels with i 6= j and s a k-expression.
Then ηi,j(s) is a k-expression and G(ηi,j(s)) is obtained from G(s) by connecting
every i-labeled vertex with every j-labeled vertex.

• Disjoint union. Let s, t be k-expressions with no vertices in common. Then s⊕ t
is a k-expression and G(s⊕ t) is the disjoint union of G(s) and G(t).

A graph G has clique-width k, written cw(G) = k, if k is the smallest number such that
there is a k-expression s for which the unlabeled version of G(s) is G. In Figure 1 we
illustrate these concepts by graph GEx and the parse tree of a possible 3-expression of
GEx.

In general, finding a k-expression is hard: [9] reports NP-completeness for determining
whether a graph has clique-width k. However, a (possibly) sub-optimal k-expression can
be computed efficiently: [21] contains an FPT algorithm which, for a given k, either
concludes that cw(G) > k or outputs a (23k+2 − 1)-expression of the graph. It is an
open problem whether finding a k-expression is fixed-parameter tractable with respect
to k. A more detailed introduction to width parameters and graph decompositions can
be found in [18].
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Γ G (VH , H)

Figure 2: An example for the reduction in the proof of Theorem 3.1.

In this paper, we want to focus on the complexity of several variants of Multicut
rather than the complexity of computing a k-expression. We therefore assume that
an appropriate k-expression is given as part of the input. The runtime estimates in
this paper are performed under the assumption that basic set operations (union, set
difference, intersection) can be computed in linear time with respect to the cardinality
of the sets.

3 Complexity Results

In this section we address the complexity of the problems UVMC, RVMC, and EMC
with regard to the parameters cw(G) and cw(G ∪ H). Let G ∪ H denote the graph
(VG, EG ∪H), i.e. the primal graph of the structure (VG, EG, H). Whereas some results
for cw(G) follow from previous work, no complexity analysis has been done for cw(G∪H)-
bounded graphs yet. Since graphs of clique-width 1 do not contain edges, we do not
mention them in this chapter.

UVMC. UVMC is known to be NP-complete on series-parallel graphs [2], i.e. for graphs
of clique-width 4. To close the gap for graphs of clique-width 2 and 3, we show that
UVMC is NP-complete on cographs (and even on cliques). The analogous result for
cw(G ∪H)-bounded graphs follows immediately.

Theorem 3.1. UVMC remains NP-complete if G is restricted to cliques.

Proof sketch. We use a reduction from Vertex cover. Let Γ := (VΓ, EΓ) be an
arbitrary graph for which we want to find a vertex cover of size at most k, i.e. a set of

vertices that covers every edge. Our input for UVMC is G := (VΓ, V
[2]

Γ ), i.e. the complete
graph on VΓ, and H := EΓ. An example is given in Figure 2. One can show that a set
of vertices is a cut in G iff it is a vertex cover of Γ.

Corollary 3.2. UVMC remains NP-complete if G ∪H is restricted to cliques.

These results prove NP-hardness for UVMC for a class of input instances with cw(G) =
2 (resp. cw(G∪H) = 2) and therefore for input instances where cw(G) (resp. cw(G∪H))
is bounded by any number ≥ 2.

EMC. In [11] it is shown that EMC is NP-complete on trees of depth 1, i.e. stars. We
show that EMC also remains NP-complete if G ∪H is restricted to cliques. Since both
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stars and cliques are cographs and hence their clique-width is 2, it follows that EMC
remains NP-complete even if either G or G∪H is restricted to graphs of clique-width 2.

Theorem 3.3. EMC is NP-complete even if G ∪H is a clique.

Proof sketch. The NP-complete P3-edge deletion problem [8] asks if it is possible
to obtain a graph containing no induced P3, i.e. a path on 3 vertices, by deleting a given
number of edges. This problem can be reduced to UVMC where G∪H is a clique. To do
so, let G be the given graph and H the edge complement. Now observe that a subgraph
of G contains no induced P3 iff it consists of disjoint cliques, which holds iff no terminal
pair is connected.

RVMC. RVMC for input instances where cw(G) is bounded by a number ≥ 3 is NP-
complete. This follows directly from the fact that RVMC is NP-complete on trees [2]
and that trees have clique-width 3. However, Theorem 3.4 shows that RVMC becomes
tractable on graphs of clique-width 2. For the parameter cw(G ∪ H) a new situation
arises, which is analyzed in Section 4.3.

Theorem 3.4. RVMC can be solved on cographs in O(|H| · |VG|) time.

Proof sketch. First note that if a cograph contains a path from a to c of length ≥ 2
then either there is a vertex b in this path such that (a, b, c) is itself a path or {a, c} is
an edge. Now, if there is a connected terminal pair in the cograph, the algorithm rejects
the input. Otherwise we construct C := {b ∈ VG : ∃(a, c) ∈ H s.t. (a, b, c) is a path}.
Because of the aforementioned fact, C contains the vertices that have to be removed.
Therefore if C contains a terminal vertex, the algorithm rejects the input. Otherwise C
is the minimal cut.

4 Algorithms

We now present FPT and XP results with several parameterizations related to clique-
width. Recall from Section 2 that when dealing with clique-width, we consider a k-ex-
pression (referred to as κ) as part of the input. Furthermore, |κ| denotes the number of
operations in κ.

4.1 Vertex Multicut with cw(G) + |H| as Parameter

We give an FPT algorithm based on dynamic programming for UVMC and RVMC with
cw(G) + |H| as parameter. The central idea of our algorithm is to keep track of the
connected components of G, while G is built according to its k-expression and potential
cuts are performed. Especially the connected components that contain terminal vertices
are important. For this purpose, we will use the concept of connected component sets
(CCSs), which only hold the “relevant” information on each connected component VC ,
namely: (i) all terminal vertices occurring in VC and (ii) all labels of the vertices in VC .
Observe that as long as no terminal pair is in a single connected component, the graph
under consideration is a solution graph. Variations of the concept of CCSs will be used
later in all following algorithms.
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Definition 4.1. Let G = (V,E) be a labeled graph, let VH ⊆ V and let L(V ′) denote the
set of labels of V ′ ⊆ V . The connected component set (CCS) of the pair (G,H) is

ccs(G,VH) := {(VC ∩ VH) ∪ L(VC) : VC ⊆ V forms a connected component} .

Observe that in case an element of a CCS contains a terminal vertex, it corresponds
to exactly one connected component. However, if an element of a CCS does not contain
a terminal, several corresponding components may exist.

In the following we will give a detailed description of the algorithm. We start by
describing the data structure, which for each subexpression s of the input k-expression κ
consists of a set Ss of CCSs and a function cutss from Ss to N. The algorithm traverses
the parse tree of the k-expression bottom-up manipulating this data structure (details
are given below). The main idea of the algorithm is that for each subexpression s of κ,

Ss = {ccs(G(s)[VG \ C], VH) : C is a cut w.r.t. G(s) ∧ |C| ≤ m}.

This means that Ss contains all possible CCSs of solution graphs for the UVMC or RVMC
problem (G(s), H,m). Furthermore for each CCS ∆ ∈ Ss, cutss(∆) is the minimum
number of cuts required to obtain a graph represented by ∆ from the original graph
G(s). The function cuts is essential to discard CCSs that have size greater than m.
Since we are only interested in cuts of size ≤ m, cutss(∆) is always ≤ m. Once the
algorithm reaches the root node, which corresponds to the k-expression κ, Sκ contains
all possible CCSs of solution graphs for the UVMC or RVMC problem (G,H,m). Hence
there is a cut set of size ≤ m if and only if Sκ is not empty.

The functions ren and con will allow us to give a succinct description of the algorithm.
ren is closely related to the ρ-operation, con to the η-operation.

Definition 4.2. reni←j and coni,j are functions that map a CCS ∆ to another CCS as
follows:

reni←j(∆) := {c ∪ {i} \ {j} : c ∈ ∆ with j ∈ c} ∪ {c : c ∈ ∆ with j /∈ c} ,

coni,j(∆) := {c ∈ ∆ : i /∈ c ∧ j /∈ c} ∪
{⋃
{c ∈ ∆ : i ∈ c ∨ j ∈ c}

}
.

We now describe what the algorithm does in each node of the parse tree of κ. The only
distinction between UVMC and RVMC is in the leaves. Below, we let s (and possibly
t) be the k-expression of the subtree(s) below the current (internal) node.

i(v): If v is a non-terminal vertex, we have two CCSs. We define Si(v) := {∅, {{i}}}
with cutsi(v)(∅) := 1 and cutsi(v)({{i}}) := 0. If v is a terminal vertex, we do
the same for UVMC but add the vertex to the CCS, i.e. Si(v) := {∅, {{i, v}}},
cutsi(v)(∅) = 1 and cutsi(v)({{i, v}}) = 0. For RVMC, we cannot remove v, thus
only Si(v) := {{{i, v}}} with cutsi(v)({{i, v}}) = 0 remains.

ρi←j(s): Sρi←j(s) := {reni←j(∆) : ∆ ∈ Ss} and for each ∆′ ∈ Sρi←j(s) we have

cutsρi←j(s)(∆
′) := min{cutss(∆) : reni←j(∆) = ∆′}.
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s⊕ t: Here we compute Ss⊕t:= {∆s ∪∆t : ∆s ∈ Ss,∆t ∈ St, cutss(∆s)+cutst(∆t) ≤ m}
and cutss⊕t(∆

′) := min{cutss(∆s) + cutst(∆t) : ∆s ∪∆t = ∆′}.

ηi,j: For each ∆ ∈ Ss there are two cases: (1) {i, j} *
⋃

∆, i.e. there is no i-labeled or
no j-labeled vertex in the graphs represented by ∆. Therefore no connections are
introduced and hence ∆ is added to Sηi,j(s). (2) Otherwise we consider coni,j(∆).
Here, edges might have been added such that a terminal pair was connected. If
this is not the case, i.e. there is no set in coni,j(∆) which contains a terminal pair,
coni,j(∆) is added to Sηi,j(s). In both cases – (1) and (2) – cutsηi,j(s) (∆′) is the
minimum number of cuts of all CCSs in Ss that lead to ∆′ if i-labeled and j-labeled
vertices are connected.

Theorem 4.3. UVMC and RVMC are FPT with respect to the parameters cw(G) and
|VH | and can be solved in time

O
(

42cw(G) · (|VH |+ 2cw(G))2|VH | · (|VH | · (cw(G) + 1) + cw(G) · 2cw(G)) · |κ|
)
.

Proof. The algorithm described above operates on the parse tree of κ. We therefore
analyze the cost of each of the four operations. The operation i(v) requires constant
time. The operations ηi,j(s) and ρi←j(s) perform basic set operations on each set in
each CCS in Ss. A CCS has size at most |VH | · (cw(G) + 1) + cw(G) · 2cw(G). That
is for each element of VH a set with at most cw(G) + 1 elements plus at most 2cw(G)

subsets of cw(G) each having size at most cw(G). In order to bound the size of Ss,
we have to bound the number of possible CCSs. Recall that each h ∈ VH appears in
at most one set in a CCS. Therefore, we can estimate the number of possible CCSs
as follows. For the first h1 ∈ VH there are 1 + 2cw(G) many possibilities, since it is
either not contained or it occurs together with an arbitrary subset of cw(G). For the
second h2 ∈ VH there are at most 2 + 2cw(G) many possibilities, since it is either not
contained, or it occurs in the set of h1, or it occurs together with an arbitrary subset
of cw(G). This scheme repeats for the other elements from VH . After fixing these,

we still have 22cw(G)
many possibilities for choosing arbitrary subsets of cw(G). This

results in less than 22cw(G) · (|VH |+ 2cw(G))|VH | CCSs in Ss. In total this yields a runtime

of at most O
(

22cw(G) · (|VH |+ 2cw(G))|VH | · (|VH | · (cw(G) + 1) + cw(G) · 2cw(G))
)

for η-

and ρ-operations. In order to compute s ⊕ t we have to consider pairs of CCSs, i.e. at
most 42cw(G) · (|VH |+2cw(G))2|VH | combinations. Computing the union is bounded by the
maximum size of a CCS.

Note that although the runtime depends on |VH |, this can also be seen as an FPT
algorithm for cw(G) + |H| since |VH | ≤ 2 |H|. Actually, this FPT result could also be
obtained via the metatheorem of [5] and an encoding of the UVMC and RVMC problem
by a Monadic Second-Order (MSO) formula in the spirit of [12]. However, a precise
upper bound on the runtime in terms of an O(·)-expression would remain obscure if the
FPT result were proved via the metatheorem.

Example for RVMC. We apply the algorithm described above to the RVMC instance
(GEx, HEx, 2), where GEx and a 3-expression of GEx are shown in Figure 1. Moreover,
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Table 2: The RVMC algorithm applied to the graph in Figure 1.

CSSs cuts CCSs cuts

s1
{
{1, h′}

}
∪
{
{2}
}

0 s5
{
{1, 2, h′}, {1, h}

}
1

(⊕)
{
{1, h′}

}
∪
{}

1 (ρ2←3)
{
{1, h′}, {1, h}

}
2

s2
{
{1, 2, h′}

}
0 s6

{
{1, 3, g′}

}
∪
{
{3, g}

}
0

(η1,2)
{
{1, h′}

}
1 (⊕)

{
{1, g′}

}
∪
{
{3, g}

}
1

s3
{
{1, 2, 3, h′}

}
0 s7

{
{1, 2, h′}, {1, h}

}
∪
{
{1, 3, g′}, {3, g}

}
1

(η2,3)
{
{1, h′}, {3}

}
1 (⊕)

{
{1, h′}, {1, h}

}
∪
{
{1, 3, g′}, {3, g}

}
2{

{1, 2, h′}
}

1
{
{1, 2, h′}, {1, h}

}
∪
{
{1, g′}, {3, g}

}
2{

{1, h′}
}

2 root
{
{1, 2, 3, g, g′, h′}, {1, h}

}
1

s4
{
{1, 2, h′}, {1, h}

}
1 (η2,3)

{
{1, h′}, {1, h}, {1, 3, g′}, {3, g}

}
2

(η1,3)
{
{1, h′}, {1, h}

}
2

{
{1, 2, 3, g, h′}, {1, h}, {1, g′}

}
2

suppose that the terminal set is HEx := {{g, g′}, {h, h′}}. In the parse tree certain
nodes are marked with s1, ..., s7. These denote the subexpressions corresponding to the
subtrees rooted at these nodes. For these nodes we give the data structure Ssi and the
cuts function in Table 2.

The operation in node s1 is ⊕. Here we take the union of the CCSs from the left
and right branch. Observe that h′ is present in every CCS, since it is a terminal vertex.
The next operations are η1,2 and η2,3. Both times the components in the first CCS are
merged, whereas the other CCSs do not change. In s3 the four rows correspond to (in
this order): no vertex cut, vertex b cut, vertex a cut, and both a and b cut. The s4-
operation is η1,3. Since both h and h′ are labeled with 1, CCSs with 3-labeled vertices
yield invalid CCSs and are therefore not listed anymore. Subexpression s6 denotes the
right branch of the parse tree. The first CCS required no cuts whereas in the second
CCS vertex c has been cut. The root node contains two valid CCSs and therefore there
are valid cuts of size 2. The first solution corresponds to the cut set {a, b} and the second
to the cut set {a, c}. Note that in general a CCS may correspond to several cuts.

4.2 RVMC with cw(G ∪H) as Parameter

In Section 3 we left open the complexity of RVMC with regard to cw(G ∪H). Now we
present an FPT algorithm for that problem on a slightly restricted class of inputs, namely
those that do not contain edges (in G) between terminal vertices. If this restriction holds,
edges between terminal vertices in G∪H always correspond to terminal pairs. Note that
an edge between two terminal vertices which do not form a terminal pair in H, does
not automatically prohibit a cut set. This restriction is not necessary if the following
conjecture1 holds.

1A stronger statement, namely that edge contractions do not increase the clique-width at all, is men-
tioned as an open problem in [14].
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Conjecture 4.4. There is a computable function f such that for every class of graphs
G, if the clique-width of G is bounded by k then the clique-width of G′ is bounded by f(k),
where G′ is the class obtained from G by closing G under edge contractions.

If this conjecture holds, we can contract all edges in G∪H between terminal vertices
a and b with {a, b} ∈ EG. Then we use the f(k)-expression of this graph as input, i.e.
the clique-width of the modified graph is still bounded. This modified graph has exactly
the same cut sets as the original graph.

The algorithm presented here is based on the one in Section 4.1. Especially the cuts
function is defined in exactly the same way, but we use a slightly different form of CCSs.
Here, CCSs are subsets of P({1, . . . , k, 1̂, . . . , k̂}). To define such CCSs, L(V ′) is as
before and L̂(V ′) := {̂i : i ∈ L(V ′)}. Now ĉcs(G,VH) := {L̂(VC ∩ VH) ∪ L(VC \ VH) :
VC ⊆ V forms a conn. comp.}. Let K̂ := {1̂, . . . , k̂}. The data structure consists of
a set S of CCSs, forbidden sets N ⊆ K̂ [1] ∪ K̂ [2] and a function cuts from S to N.
The intended meaning is that î is contained in an element of a CCS iff this component
contains an i-labeled terminal. If {̂i, ĵ} ∈ N , then there must not be an edge introduction
between a component containing an i-labeled and one containing a j-labeled terminal. If
{̂i} ∈ N , then there must not be an edge introduction between a component containing
an i-labeled terminal and any other component. The operations are as follows:

i(v): If v is a non-terminal vertex, we have two CCSs Si(v) := {∅, {{i}}}. If v is a

terminal vertex, Si(v) := {{{̂i}}}. In both cases N := ∅.

ρi←j(s): All CCSs are relabeled: j 7→ i and ĵ 7→ î. N is also changed accordingly; this
might lead to N containing sets of size 1.

s⊕ t: Here Ss⊕t is calculated in exactly the same way as in the algorithm of Section 4.1
and Ns⊕t := Ns ∪Nt.

ηi,j: If î and ĵ are present in Ss, Nηi,j(s) := Ns ∪ {̂i, ĵ}, otherwise Nηi,j(s) := Ns. The
reason for this is that there is no edge between terminal nodes in G. Consequently,
there exists a terminal pair in H that has labels i and j. Sηi,j(s) is calculated
similar to the original algorithm. However, checking if a terminal pair is contained
in a component works differently. We have to distinguish four cases: both i and
j appear in components in the CCS ∆, only i (only j) appears in a component
and fourthly neither appears. The reason why the four cases only consider the
occurence of i and j but not of î and ĵ is again the precondition that in G there
exists no edge between terminal nodes.

In the first case ∆ is not valid iff there is an h ∈ Nηi,j(s) with h ⊆
⋃
{c ∈ ∆ :

i ∈ c∨ j ∈ c∨ î ∈ c∨ ĵ ∈ c}, i.e. if the newly connected component is a superset of
a forbidden set in Nηi,j(s). In the second case we have to check whether h ⊆

⋃
{c ∈

∆ : i ∈ c∨ ĵ ∈ c}. If this is the case a terminal pair has been connected and hence
the CCS ∆ has to be discarded. Case 3 works analogously to Case 2. In Case 4
no new edges are introduced. Nevertheless we have to check if not already an i-
and j-labeled terminal pair is contained in a connected component.
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Theorem 4.5. RVMC is FPT with respect to cw(G∪H) on graphs that do not contain
edges between terminal vertices.

Runtime estimates can be found similarly to Theorem 4.3. It can easily be seen that
Conjecture 4.4 holds for cographs. Hence,

Corollary 4.6. RVMC is in P if G ∪H is restricted to cographs.

4.3 Edge Multicut with cw(G) + |H| as Parameter

For EMC, contrary to Vertex Multicut, cuts occur during η-operations, i.e. when new
edges are introduced. Therefore it is necessary to store the number of vertices in a
component with a certain label. Otherwise we would not be able to calculate the number
of cuts required to separate two components. However, adding this information to the
data structure yields up to nf(k) branchings in the algorithm, where f(k) is defined as
k, the number of labels, times the number of components in a CCS. Clearly such an
algorithm is in XP.

5 Conclusion and Future Work

We have pinpointed the parameterized complexity of the UVMC, RVMC and EMC
problem for several parameterizations involving clique-width. In the literature, also
weighted versions of Multicut have been studied where the vertices or the edges are
assigned a weight and one seeks to minimize the weight rather than the cardinality of
the cut. Our algorithms for UVMC and RVMC can be easily extended so as to also
handle weights. In contrast, there is no obvious extension of our EMC algorithm to
the weighted version of this problem. For the XP-algorithm for EMC it would be of
interest to prove a corresponding W[1]-hardness result which would imply that no FPT
algorithm exists.

One drawback of clique-width is that it is in general NP-complete to detect if a given
graph has clique-width ≤ k [9]. However, there has been recent progress in identifying
graph classes for which the computation of k-expression can be done in polynomial
time [16, 17]. Another approach, by Oum and Seymour [21], is the notion of rank-width,
which is strongly related to clique-width and which admits good algorithms for finding
decompositions. Since rw(G) ≤ cw(G) ≤ 21+rw(G)−1 holds [21], all our NP-completeness
results as well as all our FPT and XP membership results also hold for rank-width.
Nevertheless, it is to be expected that custom-made algorithms for rank-width perform
better than algorithms using a “detour” via clique-width. The construction of such
algorithms, e.g. building on [10], is a task for future work.

Finally, the question of how much edge contractions can increase the clique-width of
graphs (Conjecture 4.4) seems to be a problem worthwhile to study.
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