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Abstract
We extend the principle of proportional represen-
tation to rankings: given approval preferences, we
aim to generate aggregate rankings so that cohesive
groups of voters are represented proportionally in
each initial segment of the ranking. Such rankings
are desirable in situations where initial segments
of different lengths may be relevant, e.g., in recom-
mender systems, for hiring decisions, or for the pre-
sentation of competing proposals on a liquid democ-
racy platform. We define what it means for rankings
to be proportional, provide bounds for well-known
aggregation rules, and experimentally evaluate the
performance of these rules.

1 Introduction
Consider a population with dichotomous (approval) prefer-
ences over a set of 300 alternatives. Assume that 50% of the
population approves of the first 100 alternatives, 30% of the
next 100 alternatives, and 20% of the last 100. Suppose that
we want to obtain a ranking of the alternatives that reflects the
preferences of the population. Perhaps the most straightfor-
ward approach is to use Approval Voting (AV), which ranks the
alternatives from the most frequently approved to the least fre-
quently approved. A striking property of the resulting ranking
is that half of the population does not approve any of the first
100 alternatives in the ranking.

In many scenarios, rankings produced by Approval Voting
are highly unsatisfactory; rather, it is desirable to interleave
alternatives supported by different (sufficiently large) groups.
For instance, consider an anonymous user running a search
engine to find results for the query “Armstrong”. If 50% of the
users performing this search would like to see results for Neil
Armstrong, 30% for Lance Armstrong, and 20% for Louis
Armstrong, it is not desirable to only place results referring
to Neil Armstrong in the top part of the ranking; rather, re-
sults related to each of the Armstrongs should be displayed in
appropriately high positions.

There are numerous applications where such diversity
within collective rankings is desirable. For instance, con-
sider recommendation systems which aim at accommodating
different types of users (the estimated preferences of these user
types should be represented proportionally to their likelihood),

a human-resource department providing hiring recommenda-
tions when it is unclear how many positions are to be filled,
or committee elections with some additional structure (e.g.,
when we want to elect a committee with a chairman and vice-
chairman, as well as substitute members).

Another application in which diversity in rankings is rele-
vant is liquid democracy [Behrens et al., 2014]. A defining
feature of liquid democracy is that all participants are allowed
(and encouraged) to contribute to the decision-making process.
This may lead to situations where a very large number of pro-
posals need to be considered. Since it cannot be expected that
every participant studies all available alternatives before mak-
ing a decision, the order in which competing alternatives are
presented plays a crucial role [Behrens et al., 2014, Chapter
4.10]. In particular, the LIQUIDFEEDBACK system [Behrens
et al., 2014], used by several political parties and other or-
ganisations, implements one of the rules (reverse SeqPAV)
that we analyze in this paper. Thus, obtaining a better under-
standing of proportionality in rankings has direct relevance to
real-world applications.

The idea of rankings that are diversified with respect to
the preferences of a population appears in several streams of
research. For example, in the context of search engines, this
aim is often referred to as diversifying search results [Welch
et al., 2011; Santos et al., 2015; Kingrani et al., 2015;
Wang et al., 2016]. There are also models which incorpo-
rate this idea into online advertising (see the work of Hu et
al. [2011], and the references therein). In the context of liquid
democracy, Behrens et al. observe that using AV gives rise to
what they call the “noisy minorities” problem: relatively small
groups of very active participants can “flood” the system with
their contributions, creating the impression that their opinion
is much more popular than it actually is. This is problematic
insofar as other alternatives (that are potentially much more
popular) run the risk of being “buried” and not getting suffi-
cient exposure. Behrens et al. suggest that, in order to prevent
this problem, the ranking mechanism needs to ensure that the
order adequately reflects the opinions of the participants.

In this paper, we propose an abstract model applicable to
all these scenarios, and initiate a formal study of the problem
of finding a proportional collective ranking. In our study, we
use tools from political and social sciences, and in particular
we adapt the concept of proportional representation [Balinski
and Young, 1982; Monroe, 1995] to the case of rankings.



Informally, proportional representation requires that the extent
to which a particular preference or opinion is represented in the
outcome should be proportional to the frequency with which
this preference or opinion occurs within the population. For
instance, proportional representation is often a requirement in
the context of parliamentary elections, where candidates are
grouped into political parties and voters express preferences
over parties. If a party receives, say, 20% of the votes, then
proportional representation requires that this party should be
allocated (roughly) 20% of the parliamentary seats (see the
work of Laslier, 2012, for a discussion of arguments for and
against proportional representation in a political context).

The concept of proportional representation can be ex-
tended to the case of rankings in a very natural way. In-
formally, we say that a ranking τ is proportional if each
prefix of τ , viewed as a subset of alternatives, satisfies
(some form of) proportional representation. In more de-
tail, inspired by the concepts of Extended or Proportional
Justified Representation that have been recently introduced
in the context of multiwinner elections [Aziz et al., 2017;
Sánchez-Fernández et al., 2017], we require that, for each
“sufficiently large” group of voters with consistent preferences,
a proportional number of alternatives approved by this group
is placed appropriately highly in the ranking. The position
of such alternatives in the ranking depends on the level of
their support, indicated by the size and the cohesiveness of the
respective group of voters.

Our Contribution. (i) We formalize the concept of pro-
portionality of a ranking and introduce a quantitative way of
measuring it, (ii) we observe that several known multiwinner
rules satisfying committee monotonicity can be viewed as rank-
ing rules, (iii) we provide theoretical bounds on the quality
of proportional representation of several ranking rules, and
(iv) we experimentally evaluate ranking rules.

Related Work. Proportional representation is traditionally
studied in scenarios where a subset of alternatives (such as a
parliament or a committee) needs to be chosen (see the sur-
vey by Faliszewski et al. [2017]). The setting that is most
commonly studied is that of closed party lists, where alter-
natives are grouped into pairwise disjoint parties and voters
are restricted to selecting a single party [Gallagher, 1991]. In
this setting, providing proportional representation reduces to
solving an apportionment problem [Balinski and Young, 1982;
Pukelsheim, 2014; Brill et al., 2017b]. In an influential paper,
Monroe [1995] generalized the concept of proportional rep-
resentation to settings where voters’ preferences are given
as rank-orderings of the set of alternatives. For approval
preferences, concepts capturing proportional representation
have recently been studied by Aziz et al. [2017] and Sánchez-
Fernández et al. [2017].

The setting considered in this paper differs from all of the
above settings in that we are interested in ranking the alterna-
tives, rather than choosing a subset of them. To the best of our
knowledge, proportional rankings based on approval prefer-
ences have not been considered in the literature. In the context
of linear (i.e., rank-order) preferences, proportional rankings
are discussed by Schulze [2011]. However, this paper neither

proposes a measure of proportionality, nor does it compare the
proportionality provided by different rules.

An extended version of this paper, including all proofs, can
be found on arXiv [Skowron et al., 2016].

2 Preliminaries
For s ∈ N, we write [s] = {1, . . . , s}. For each set X , we let
S(X) and Sk(X) denote the set of all subsets of X , and the
set of all k-element subsets of X , respectively.

Let N = [n] be a finite set of voters and A a finite set
of m alternatives. Each voter i ∈ N approves a nonempty
subset of alternatives Ai ⊆ A. For each a ∈ A, we write
Na for the set of voters who approve a, i.e., Na = {i ∈ N :
a ∈ Ai}. We refer to |Na| as the approval score of a. A list
P = (A1, . . . , An) of approval sets, one for each voter i ∈ N ,
is called a profile on (A,N).

A ranking is a linear order over A. For a ranking r and for
k ∈ [m], we denote the k-th element in r by rk. Thus, r can be
represented by the list (r1, r2, . . . , rm). Given a ranking r =
(r1, . . . , rm) and k ∈ [m], we let r≤k = {r1, . . . , rk} denote
the subset of A consisting of the top k elements according
to r. An (approval-based) ranking rule f maps a profile P on
(A,N) to a ranking f(P ) over A.

In what follows, we consider several ranking rules that
can be obtained by adapting existing multiwinner rules. An
(approval-based) multiwinner rule takes as input a profile P
on (A,N) and an integer k ∈ [m] and outputs a k-element
subset of A, referred to as the winning committee. A generic
adaptation of multiwinner rules to ranking rules is possible
whenever the respective multiwinner ruleR has the property
that R(P, k − 1) ⊆ R(P, k) for all k ≤ m (this property
is known as committee monotonicity or house monotonicity):
if this is the case, we can produce a ranking by placing the
unique alternative inR(P, k) \ R(P, k − 1) in position k.

Fix a profile P . We consider the following ranking rules:1

Approval Voting (AV). AV ranks the alternatives in order of
their approval score, so that |Nr1 | ≥ · · · ≥ |Nrm |.
Sequential Thiele Rules. This family of rules has been pro-
posed by Danish polymath Thorvald N. Thiele [1895] (and is
also known as Reweighted Approval Voting). It is parameter-
ized by weight vectors, i.e., sequences (w1, w2, . . . ) of non-
negative reals. For a given weight vector w = (w1, w2, . . . )
and a subset S ⊆ A of alternatives, define the w-Thiele score
of S as w(S) =

∑
i∈N

∑|Ai∩S|
j=1 wj . Usually, it is assumed

that w1 ≥ w2 ≥ . . . ; the intuition behind this constraint
is that voters prefer sets S that contain more of their ap-
proved alternatives, but there are decreasing marginal returns
to adding further such alternatives to S. The sequential w-
Thiele rule constructs a ranking iteratively, starting with the
empty partial ranking r = (). In step k ∈ [m], it appends
to r an alternative a with maximum marginal contribution
w(r≤k−1 ∪{a})−w(r≤k−1) among all yet unranked alterna-
tives. Many interesting rules belong to this family for suitable

1All rules that we describe may have to break ties at some point
in the execution; we adopt an adversarial approach to tie-breaking,
i.e., we say that a ranking rule satisfies a property only if it satisfies it
for all possible ways of breaking ties.



weight vectors w. For example, AV can be viewed as the
sequential w-Thiele with w = (1, 1, 1, . . .), Sequential Pro-
portional Approval Voting (SeqPAV) is defined by wPAV =
(1, 1/2, 1/3, . . .), Greedy Chamberlin–Courant (Greedy CC)
is defined by w = (1, 0, 0, . . .), and for every p > 1, the
p-geometric rule is defined by w = (1/p, 1/p2, 1/p3, . . .).

Reverse SeqPAV. This rule is a bottom-up variant of SeqPAV;
it has been introduced by Thiele [1895] (in the multiwinner set-
ting) and was independently proposed by Behrens et al. [2014]
under the name harmonic weighting. Initially it sets S = A
and r = (). Then, at each step it picks an alternative a min-
imizing wPAV(S) − wPAV(S \ {a}), removes it from S and
prepends it to r, i.e., the rule builds a ranking starting with the
lowest-ranked alternative.

Phragmén’s Rule. Swedish mathematician Edvard
Phragmén [1895] proposed a committee selection rule that
can be phrased as a load balancing procedure: every alterna-
tive incurs a load of one unit, and the load of alternative a
has to be distributed among all voters in Na. Phragmén’s rule
constructs a ranking iteratively, starting with the empty partial
ranking r = (). Initially, the load of each voter is 0. At each
step, the rule picks a yet unranked alternative and distributes
its associated load of 1 over the voters who approve it; the
alternative and the load distribution scheme are chosen so as
to minimize the maximum load across all voters. This alter-
native is then appended to the ranking r. (For details, see the
work of Mora and Oliver [2015], Janson [2016], and Brill et
al. [2017a]).

3 Measures of Proportionality
In this section, we define a measure of proportionality for
rankings and then extend it to ranking rules. In what follows,
let P be a profile on (A,N) with |A| = m and |N | = n.

Given a group of voters N ′ ⊆ N and a set of alternatives
S ⊆ A, a natural measure of the group’s “satisfaction” pro-
vided by S is the average number of alternatives in S that are
approved by a voter in N ′. Thus, we define

avg(N ′, S) =
1

|N ′|
∑
i∈N ′
|Ai ∩ S|.

We refer to avg(N ′, S) as the average representation of N ′
with respect to S. To extend this idea to rankings, we con-
sider the case where the subset S is an initial segment of
a given ranking r, i.e., S = r≤k for some k ∈ [m]. Intu-
itively, every group N ′ wants to have an average representa-
tion avg(N ′, r≤k) that is as large as possible, for all k ∈ [m].
Now, in our model, whether a group of voters deserves to
be represented in the top positions of a ranking depends on
two parameters: its relative size and its cohesiveness, i.e., the
number of alternatives that are unanimously approved by the
group members. This motivates the following definition.

Definition 1. (Significant group) Fix a profile P on (A,N).
The proportion of a group N ′ ⊆ N is α(N ′) = |N ′|/|N |,
and the cohesiveness of N ′ is given by λ(N ′) = |

⋂
i∈N ′ Ai|.

Given α ∈ (0, 1] and λ ∈ [m], we say that a group N ′ is
(α, λ)-significant in P if |N ′| = dαne and λ(N ′) ≥ λ.

The following definition captures the intuitively compelling
idea that a group can demand to be represented in the top
positions of the ranking in proportion to its significance, as
long as the number of demanded alternatives does not exceed
the cohesiveness of the group.
Definition 2. (Justifiable demand) The justifiable demand
of a group N ′ ⊆ N with respect to the top k positions of a
ranking is defined as

jd(N ′, k) = min(bα(N ′) · kc, λ(N ′)).
For example, if a group contains 25% of the voters and has a

cohesiveness of 3, it has a justifiable demand of 1 with respect
to the top four positions, a justifiable demand of 2 with respect
to the top eight positions, and a justifiable demand of 3 with
respect to the top twelve positions, which is also its maximum
justifiable demand.

It would be desirable to find a rule that provides every
group with an average representation that meets the group’s
justifiable demand. However, the following example shows
that this is not always possible.
Example 1. Let A = {a, b, c} and n = 6 and consider the
profile P given by A1 = {a}, A2 = {a, b}, A3 = {b}, A4 =
{b, c}, A5 = {c}, and A6 = {a, c}. Consider the ranking
r = (a, b, c). The group N ′ = {4, 5, 6} has α(N ′) = 1/2,
λ(N ′) = 1. Therefore, its justifiable demand with respect to
the top two positions is jd(N ′, 2) = min(b1/2 · 2c, 1) = 1.
However, its average representation with respect to the top
two positions of r is only avg(N ′, {a, b}) = 2/3. Since P is
completely symmetric with respect to the alternatives, we can
find such a group for every other ranking as well.

Example 1 shows that it may not be feasible to provide
each group with the level of representation that meets its jus-
tifiable demand, but it might be possible to guarantee a large
fraction of it. For instance, in Example 1 one can ensure that
avg(N ′, k) ≥ 2/3 · jd(N ′, k) for all groups N ′ and for all
k ≤ 3. This observation leads to the following definition.
Definition 3. (Optimal ranking) We define the quality of a
ranking r for a profile P as

qP (r) = min
k∈[m],N ′⊆N :
jd(N ′,k)>0

avg(N ′, r≤k)

jd(N ′, k)
.

An optimal ranking for P is a ranking in argmaxr qP (r).
We observe that qP (r) is well-defined, i.e., there is always

a pair (N ′, k) with jd(N ′, k) > 0. Indeed, take an alternative
a with maximum approval score: as Ai 6= ∅ for all i ∈ N ,
we have |Na| ≥ n/m by the pigeonhole principle. Further,
λ(Na) ≥ 1, so jd(Na,m) ≥ min(bn/mn ·mc, 1) = 1.
Example 2. Consider the profile from Example 1 and the
ranking r = (a, b, c). For the first position in this ranking
(i.e., for k = 1), there exists no group of voters with a positive
justifiable demand, since such a group would need to consist of
all the voters who all approve at least one common alternative.
For k = 2, the justifiable demand of three groups of voters is
equal to 1. These groups are N1 = {1, 2, 6}, N2 = {2, 3, 4},
andN3 = {4, 5, 6}, with commonly approved alternatives a, b,
and c, respectively. The average representation of groups N1,



N2, and N3 is equal to 4/3, 4/3, and 2/3, respectively. There
is no group with justifiable demand of 2 with respect to the
top two positions. Finally, for k = 3 there are 9 groups with
justifiable demand of 1 (these are {1, 2}, {1, 6}, {2, 3}, {2, 4},
{2, 6}, {3, 4}, {4, 5}, {4, 6}, and {5, 6}); each such group has
an average representation of at least one. There is no group
with a justifiable demand of two—such a group would need
to contain four voters, who all approve at least two common
alternatives—and, clearly, no group with a justifiable demand
of three. Thus, the quality of our ranking is qP (r) = 2/3, and
this is an optimal ranking.

Unfortunately, good rankings are hard to compute.
Theorem 1. Given a profile P , it is NP-hard to decide
whether there exists a ranking r with qP (r) ≥ 1.

Proof. We give a reduction from VERTEX COVER. An in-
stance of this problem is given by a graph G = (V,E) and
an integer `. It is a ‘yes’-instance if there is a subset of `
vertices S ⊆ V such that each edge in E contains some vertex
in S. We can assume that G is 3-regular, as VERTEX COVER
remains NP-hard in this case [Garey and Johnson, 1979].

Given a vertex cover instance (G, `) with G = (V,E), we
construct an instance of the problem of finding an optimal
ranking as follows. Since the degree of each vertex is exactly
3, we can assume that 3` ≥ |E|: instances with 3` < |E| are
trivially ‘no’-instances. We set A = V ∪ {d}, where d is a
dummy alternative. For every edge {a, b} ∈ E we create a
voter that approves {a, b}. We also add 3` + 3 − |E| ≥ 3
dummy voters who approve d only. Consequently, n = |N | =
3` + 3. Since the graph is 3-regular, we have m = |A| =
2|E|/3 + 1 ≤ 3`. This defines the profile P . It can be shown
that G has a vertex cover of size ` if and only if there exists a
ranking r with qP (r) ≥ 1, i.e., avg(N ′, r≤k) ≥ jd(N ′, k) for
all N ′ ⊆ N and k ∈ [m]. For details, see the full version of
the paper [Skowron et al., 2016].

Further, a fairly straightforward reduction from the Max-
imum k-Subset Intersection problem [Xavier, 2012] shows
that even the problem of deciding whether there exists an
(α, λ)-significant group of voters is NP-hard.
Proposition 1. The problem of deciding whether there exists
an (α, λ)-significant group of voters is NP-complete.

The measure qP (r) can be lifted from individual rankings
to ranking rules: we can measure the quality of a ranking
rule f as the minimum value of qP (f(P )), over all possible
profiles P . However, in our theoretical analysis of ranking
rules we take the following approach, which assumes more
flexibility on the part of groups of voters that seek to be repre-
sented: given a group of proportion α and with cohesiveness
at least λ, we ask at which point in the ranking the average
satisfaction of this group reaches λ. This guarantee is given
by the function κ(α, λ), which is formally defined as follows.
Definition 4. (κ-group representation) Let κ(α, λ) be a
function from ((0, 1] ∩ Q) × N to N. A ranking r provides
κ-group representation (κ-GR) for profile P if for all rational
α ∈ (0, 1], all λ ∈ N, and all voter groups N ′ ⊆ N that are
(α, λ)-significant in P it holds that

avg(N ′, r≤κ(α,λ)) ≥ λ.

A ranking rule f satisfies κ-group representation (κ-GR) if
f(P ) provides κ-group representation for every profile P .
Example 3. Consider again the profile from Example 1 and
the ranking r = (a, b, c). For the κ-group representation of
this ranking we have κ(1/2, 1) ≥ 3. To establish this, we
consider groups consisting of half of the voters who jointly
approve at least one alternative, and look for the smallest
value of k such that each such group on average approves at
least one from the the top k alternatives in r.

Let us now explore the differences between the two mea-
sures, the worst-case quality of the ranking qP (f(P )), and κ-
group representation. While qP (f(P )) is just a single number,
κ-group representation carries more information. In particu-
lar, it makes it possible to express the fact that some groups
are better represented in the top parts of the resulting rank-
ing than further below (this can be captured by making κ
a convex function of λ). As a more concrete example, as-
sume that qP (f(P )) < 1/2 and consider a group N ′ that is
(1/10,m/2)-significant. Since the justified demand of this group
is upper-bounded by m/10, qP (f(P )) does not say anything
about how far we need to go down the ranking to obtain an
average representation greater than λ > m/20 (the justifiable
demand of N ′ is at most m/10 and f guarantees only half of
it), while κ-group representation provides such information
for each λ ∈ [1,m/2].

In the next section, we investigate guarantees in terms of κ-
group representation provided by the ranking rules introduced
in Section 2.

4 Theoretical Guarantees for Ranking Rules
We start our analysis with the simplest of our rules, namely,
Approval Voting (AV). Interestingly, AV provides very good
guarantees to majorities, that is, groups with α(N ′) > 1/2. For
example, forα(N ′) = 0.8 it guarantees an average satisfaction
of λ within the top d1.5λe positions. However, for groups with
α(N ′) ≤ 1/2 it provides no guarantee at all.
Theorem 2. For rational α > 1/2, AV satisfies κ(α, λ)-
group representation for κ(α, λ) =

⌈
λα

2α−1
⌉
, but fails it for

κ(α, λ) =
⌈

λα
2α−1

⌉
− 1. However, for α < 1/2, AV does not

satisfy κ(α, λ)-group representation for any function κ(α, λ).

Proof. We first prove that for α > 1/2, AV satisfies κ(α, λ)-
group representation for κ(α, λ) = d λα

2α−1e. Consider a group
of voters N ′ ⊆ N with n′ = |N ′| = dαne, λ(N ′) ≥ λ. Let
k =

⌈
λα

2α−1
⌉
, and let r be the ranking returned by AV. Assume

for the sake of contradiction that avg(N ′, r≤k) < λ. Then
there exists some alternative h that is approved by all voters
in N ′, but does not appear in the top k positions of r. Thus,
each alternative in r≤k is approved by at least dαne voters and
hence by at least 2dαne − n voters in N ′. Hence,

avg(N ′, r≤k) ≥ k ·
2dαne − n
dαne

≥ k · 2αn− n
αn

≥ λ.

This contradiction proves our first claim.
Now, we show that AV does not satisfy κ(α, λ)-group rep-

resentation for κ(α, λ) =
⌈

λα
2α−1

⌉
− 1. Fix α ∈ (0, 1] ∩ Q

and λ ∈ N and let k =
⌈

λα
2α−1

⌉
− 1 < λα

2α−1 . As α ∈ Q, there



exist integers x and n such that α = x/n. Let A = A′ ∪ A′′,
where |A′| = |A′′| = k and A′ ∩A′′ = ∅. Consider a profile
on (A,N) that contains two groups of voters G and F with
sizes |G| = |F | = x = αn, such that G and F have the small-
est possible intersection. That is, for α ≤ 1/2 the sets G and F
are disjoint, and for α > 1/2 we have |G ∩ F | = (2α − 1)n.
Suppose that each voter in G approves all alternatives in A′
and each voter in F approves all alternatives in A′′. AV may
rank A′ in the first k positions. Thus,

avg(F, r≤k) = k · (2α− 1)n

αn
< λ.

Finally, let us prove that for α ≤ 1/2, AV does not satisfy
κ(α, λ)-group representation for any function κ(α, λ). For
the sake of contradiction let us assume that this is not the
case. Let us fix α ∈ (0, 1], λ ∈ N, and let k = κ(α, λ).
Using the same idea as in the previous paragraph, we obtain
an instance where there is a set of voters N ′ with |N ′| = αn,
λ(N ′) = |N ′| ≥ λ such that no voter in N ′ approves any of
the alternatives appearing in the top k positions of the ranking
returned by AV. This gives a contradiction.

In contrast, Phragmén’s rule, SeqPAV and p-geometric rules
give reasonable guarantees for all values of α and λ.
Theorem 3. SeqPAV satisfies κ(α, λ)-group representation
for κ(α, λ) =

⌈ 2(λ+1)2

α2

⌉
.

Proof. Fix α ∈ (0, 1], λ ∈ N, a profile P , and a group of
voters N ′ ⊆ N such that n′ = |N ′| = dαne and λ(N ′) ≥ λ.
Set k =

⌈ 2(λ+1)2

α2

⌉
. Let r be the ranking returned by SeqPAV.

Assume for the sake of contradiction that avg(N ′, r≤k) <
λ and set z = n′ · avg(N ′, r≤k); note that z < λn′. By
our assumption, at the end of each step t ∈ [k] there exists
some alternative that is approved by all voters in N ′, but
has not been ranked yet; let h be some such alternative. For
t ∈ [k + 1], consider the moment just before the t-th step of
SeqPAV. Let ai(t) denote the number of alternatives selected
so far that appear in Ai, and let T (t) =

∑
i∈N

1
ai(t)+1 . Note

that n = T (1) ≥ T (2) ≥ . . . ≥ T (k + 1) ≥ 0. For each
t ∈ [k + 1] we have

∑
i∈N ′ ai(t) ≤ z. Using the arithmetic

mean–harmonic mean inequality, we infer

z + n′

n′
≥
∑
i∈N ′(ai(t) + 1)

n′
≥ n′∑

i∈N ′
1

ai(t)+1

,

that is,∑
i∈N ′

1

ai(t) + 1
≥ (n′)2

z + n′
>

(n′)2

n′(λ+ 1)
=

n′

λ+ 1
.

Consider the alternative a selected by SeqPAV at step t,
t ∈ [k]. Without loss of generality, assume that Na =
{1, . . . , s}. Since alternative h is available at this step, it
has to be the case that SeqPAV favors a over h, i.e., for
the harmonic weight vector w = (1, 1/2, 1/3, . . . ) we have
w(r≤t−1∪{a})−w(r≤t−1) ≥ w(r≤t−1∪{h})−w(r≤t−1).
This implies

s∑
i=1

1

ai(t) + 1
≥
∑
i∈N ′

1

ai(t) + 1
>

n′

λ+ 1
.

Thus, we have

T (t)− T (t+ 1) =

s∑
i=1

( 1

ai(t) + 1
− 1

ai(t) + 2

)
=

s∑
i=1

1

(ai(t) + 1)(ai(t) + 2)
≥

s∑
i=1

1

2(ai(t) + 1)2
.

Applying the Cauchy–Schwarz inequality to (1, . . . , 1) and
( 1
a1(t)+1 , . . . ,

1
as(t)+1 ), we obtain

s∑
i=1

1

2(ai(t) + 1)2
≥ 1

2s

( s∑
i=1

1

ai(t) + 1

)2
>

1

2n

( n′

λ+ 1

)2
≥ nα2

2(λ+ 1)2
.

Since the above inequality holds for each t ∈ [k], we have

T (1)− T (k + 1) =

k∑
t=1

(
T (t)− T (t+ 1)

)
>

knα2

2(λ+ 1)2
.

Since knα2

2(λ+1)2 ≥ n, we have T (k+1) < T (1)−n = n−n =

0, a contradiction. This completes the proof.

The technique developed in the proof of Theorem 3 can
be used to provide similar bounds for other sequential Thiele
rules. For the p-geometric rule we obtain the following bound.

Theorem 4. For each p > 1, the p-geometric rule satisfies
κ(α, λ)-group representation for κ(α, λ) =

⌈
pλ+1

α(p−1)
⌉
.

A much more involved analysis using a potential function
argument gives us a bound for Phragmén’s rule.

Theorem 5. Phragmén’s rule satisfies κ(α, λ)-group repre-
sentation for κ(α, λ) = d 5λα2 + 1

αe.
Theorem 4 establishes a linear relationship between the

proportion of the group α and the guarantee κ(α, λ). Thus,
our bound for the p-geometric rule is better than our bounds
for SeqPAV and Phragmén’s rule from Theorems 3 and 5,
respectively. Further, as suggested by Example 1, a linear
relationship is the best we can hope for. Unfortunately, as
a tradeoff we obtain an exponential relationship between the
required amount of representation λ and the guarantee κ(α, λ).
Nevertheless, Theorem 4 shows that if we are only interested
in optimizing κ(α, λ) for a constant value of λ > 1 (e.g., if
we know that no agent desires more than λ objects in total),
then the p-geometric rule provides very good guarantees for
groups of different sizes. Furthermore, it can be shown that
by taking p = λ/(λ+ 1) we get the best possible guarantee
in this setting (i.e., for a fixed λ).

For Reverse SeqPAV, we have not been able to establish an
analogous lower bound. However, we can obtain a bound on
κ(α, λ) for each α ∈ (0, 1] and for some sufficiently large λ.

Theorem 6. Let α ∈ (0, 1], λ ∈ N, and let N ′ ⊆ N be
an (α, λ)-significant group. Let r be the ranking returned
by Reverse SeqPAV. Then, there exists y ≥ λ such that
avg(N ′, r≤y/α) ≥ y.
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5/4-Geometric
Rule

2-Geometric
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10-Geometric
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Figure 1: Violations of justified demand encountered in our data sets.
The x-axis shows the proportion of the respective group of voters,
α(N ′), and the y-axis shows the quotient of average representation
and justified demand, yr(N ′, k). Roughly, ranking rules with more
gray points perform worse according to our metrics; lower points
correspond to more severe violations of proportionality. Points to
the left correspond to small groups, points to the right correspond to
large groups with unmet justified demand.

5 Experimental Evaluation of Ranking Rules
The results of the previous section provide worst-case guaran-
tees for several interesting ranking rules. We now complement
these results with upper bounds, i.e., observed “violations” of
the justified demand of voter groups. To this end, we consider
a large number of synthetic preferences (various variants of
the Impartial Culture model, Mallows’ model, and Urn model)
and real-world preference data sets taken from PrefLib [Mattei
and Walsh, 2013], and analyze the representation offered by
ranking rules. In total, our experiments are based on 315,500
instances. Due to space constraints we only give a very brief
description of the experiments and a short discussion of what
we learned. A more complete description of the experimental
setting and an analysis of the results are provided in the full
version of the paper [Skowron et al., 2016].

5.1 Measures of Quality of Group Representation
In our experiments we record every violation of justified de-
mand: If, for a ranking r and a k ∈ [m], there exists a group
N ′ with avg(N ′, r≤k) < jd(N ′, k), we set yr(N ′, k) =
avg(N ′,r≤k)

jd(N ′,k) and plot a point at (α(N ′), yr(N ′, k)) indicating
this violation. Figure 1 shows these plots for different ranking
rules, including the “best-of” rule, which selects a ranking r
that has the highest quality qP (r) among the rankings gen-
erated by our rules (note that this need not be the optimal
ranking according to Definition 3). Violations displayed in the
lower part of the plots have a small ratio yr and thus are more

severe. Note that several points may originate from the same
ranking, and different rankings may produce the same point.
Hence, these plots do not display how often violations occur
but rather in which regions (small/large groups, minor/major
violations) violations have been recorded.

5.2 Results of the Simulations
Our experiments indicate that (i) among the rules we con-
sider, the 2-geometric rule, SeqPAV, Reverse SeqPAV, and
Phragmén’s rule are best suited to generate proportional rank-
ings, and (ii) there is no single best choice among these four
rules (the best-of rule outperforms all of them). In particular it
is noteworthy that these four rules achieve a quality of at least
1/2 on our test instances, which is only surpassed by the best-of
rule (which achieves at least 2/3). Unfortunately, the best-of
rule is certainly not practical, as it is very expensive to com-
pute qP (r). Further experiments and theoretical results are
required to determine which (polynomial-time computable)
rule is the best choice (for a given data set). Additional in-
sight can be gained from the plots of geometric rules: The 5/4-
geometric rule resembles the plot for AV, and the 10-geometric
rule shows mainly violations in the top part similarly to Greedy
CC. This is a consequence of the fact that the 1-geometric rule
is exactly AV and that the p-geometric rule approaches Greedy
CC as p → ∞. Whether p = 2 is the sweet spot between
these two extremes remains to be determined.

6 Conclusions
In this paper, we have formalized a fundamental concept that is
relevant to many real-life applications: proportional rankings
can provide diversified search results, can accommodate dif-
ferent types of users in recommendation systems, can support
decision-making processes under liquid democracy, and can
even produce committees with an internal hierarchical struc-
ture. Our formalization of this problem allows us to leverage
voting rules introduced as far back as the 19th century and
apply them to these modern application scenarios.

After evaluating the proportionality of several appealing
ranking rules both theoretically and experimentally, we identi-
fied four such rules that appear to perform very well in this re-
gard: the 2-geometric rule, Sequential Proportional Approval
Voting and its reverse variant, and Phragmén’s rule. However,
none of these rules clearly outperforms the other three, and
there remains a need for an in-depth analysis to determine
which rules are most appropriate for various applications.

While all four of these rules are polynomial-time com-
putable, we have shown that the optimal rule (i.e., the rule
that outputs rankings maximizing the quality measure qP ) is
NP-hard to compute. It would be desirable to develop ways to
compute the outputs of this rule in reasonable time for prac-
tical instances, and to identify other ranking rules that may
provide an even better approximation to the optimal rule than
the rules we have considered in this work.
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