
Fixed-Parameter Algorithms for Closed World Reasoning1

Martin Lackner and Andreas Pfandler2

Abstract. Closed world reasoning and circumscription are essen-
tial tasks in AI. However, their high computational complexity is a
serious obstacle for their practical application. In this work we em-
ploy the framework of parameterized complexity theory in order to
search for fixed-parameter algorithms. We consider eleven parame-
ters describing different characteristics of the input. For several com-
binations of these parameters we are able to design efficient fixed-
parameter tractable algorithms. All our algorithms have a runtime
only single-exponential in the parameters and linear in the input size.
Furthermore, by providing parameterized hardness results we show
that we have actually found all tractable fragments involving these
eleven parameters. We hereby offer a complete picture of the pa-
rameterized complexity of brave closed world reasoning and circum-
scription.

1 Introduction
Closed world reasoning [21] is a central technique used in AI and
database theory. The core of this formalism is the closed world as-
sumption. The closed world assumption asserts that any information
not stored in a knowledge base is assumed to be false. In this paper a
knowledge base is represented as a propositional formula ϕ. We con-
sider the question of whether an information π, also represented as
a propositional formula, is entailed by ϕ under the closed world as-
sumption. A common way to formalize the closed world assumption
for propositional formulas is with the help of (subset) minimal mod-
els: The formula ϕ entails π if π is true in at least one minimal model
of ϕ (brave reasoning) or π is true in all minimal models (cautious
reasoning).

An especially expressive form of the closed world assumption
is ECWA, the extended closed world assumption [10]. Here three
types of variables of ϕ are distinguished: P , Q and Z variables.
A model M is 〈P,Q,Z〉-minimal if there is no model M′ with
M′ ∩ P ⊂ M∩ P andM′ ∩ Q = M∩ Q. In [10] it was shown
that ECWA coincides with circumscription on propositional formu-
las. Circumscription [18] is a powerful reasoning tool applicable to
many formalisms such as belief revision [17] and answer-set pro-
gramming [6].

The computational complexity of closed world reasoning and cir-
cumscription is well explored. In [5] it was shown that deciding
whether there is a minimal model containing a given variable is ΣP2 -
complete. In [1] the complexity for several restricted classes of for-
mulas is studied. However, only few tractable cases have been dis-
covered in these papers. Since these tractability results are only appli-
cable to rather restricted classes of formulas, the search for efficient
algorithms has to continue.

1 Supported by the Austrian Science Fund (FWF): P20704-N18.
2 Institute of Information Systems, Vienna University of Technology, Austria,

email:{lackner, pfandler}@dbai.tuwien.ac.at

One approach how to tackle computationally hard problems is pa-
rameterized complexity theory. The idea of a parameterized com-
plexity analysis is to identify properties of the input – so-called pa-
rameters – and to analyze the complexity of the problem from a mul-
tivariate point of view. This is in contrast to a classical complexity
analysis where only the input size is considered. The main concept is
fixed-parameter tractability. An algorithm is called fixed-parameter
tractable (fpt) with respect to the parameters k1, k2, . . . , kl if it
solves the given problem in time O(f(k1, k2, . . . , kl) · nc). Here
f is a computable (usually exponential) function and c a constant.
Observe that the runtime of such an fpt-algorithm is only polyno-
mially influenced by the input size. Hence such an algorithm might
perform well even on large instances given that the parameter values
are comparably small. The framework of parameterized complexity
theory also offers tools for proving hardness results and therefore al-
lows to rule out the possibility of fpt-algorithms in some cases (under
standard complexity theoretic assumptions).

Parameterized complexity theory has received increasing interest
in the field of AI as can be seen in the survey [13]. The parameter-
ized complexity of answer-set programming – which also involves
minimal models – has been extensively studied in [7, 15, 20, 22].
In [16] the parameterized complexity of computing minimal models
is studied. However, the minimization is performed with respect to
all variables, i.e., there are only P -variables. Tree-width based fpt-
algorithms for several closed world reasoning formalisms are pre-
sented in [11]. While this work is remarkable for the great num-
ber of considered formalisms, the algorithms require the expensive
computation of a tree decomposition. A first parameterized complex-
ity analysis in the area of AI that also involves hardness results has
been performed in [12]. The authors introduce the problem SMALL

MODEL CIRCUMSCRIPTION (SMC) which is also the problem we
will focus on in our paper. SMC asks whether – given two proposi-
tional formulas ϕ and π – there exists a 〈k;P,Q,Z〉-minimal model
of ϕ in which the property π holds. This means that for finding a
model of ϕ as well as for the minimality check only “small models”
are considered, i.e., at most k variables can be set to true. SMC can
therefore be considered as brave reasoning under ECWA restricted
to small models. As stated in [12], this restriction makes sense if one
has large theories but is mainly interested in small models (such as
in abductive diagnosis). In [12] only the parameter k is studied and
several hardness results are shown for this parameter. Also, an fpt-
algorithm is obtained but only for a drastically restricted version of
SMC. Despite the wealth of parameterized complexity results in AI,
a systematic parameterized complexity analysis of circumscription
has not been performed until now.

In our work we conduct an extensive parameterized complexity
analysis of SMC aiming at efficient fpt-algorithms. We take eleven
parameters into consideration (listed in Table 1) all of them being
efficiently computable. For each of the 211 combinations of param-

eters we provide either an fpt-algorithm or prove a hardness result.
The following results have been achieved:

• We present five fpt-algorithms. They are fpt with respect to com-
binations of parameters – single parameters do not yield fixed-
parameter tractability for SMC. These algorithms are single ex-
ponential in the parameters and linear in the input size n and can
therefore be expected to perform especially well on instances with
moderate parameter values.

• Two of these algorithms are obtained by making use of backdoor
sets [23]. Backdoor sets are distance measures to tractable formula
classes – in our case they measure the distance to Horn formulas.
We apply this concept to SMC.

• Finally we show that this paper contains all fpt-algorithms pos-
sible for the considered set of parameters. This is achieved by
proving parameterized hardness results for the remaining combi-
nations of parameters. As a consequence we can conclude that our
analysis is indeed complete for the considered set of parameters.

2 Preliminaries

Graphs and sets. An (undirected) graph is defined as a pair G =
(V,E) where V is the set of vertices and E consists of subsets
of V of cardinality 2. For m ∈ N, we use [m] to denote the set
{1, . . . ,m}.
Boolean logic. A literal is a variable (positive literal) or a negated
variable (negative literal). A clause is a disjunction of literals. A for-
mula is in conjunctive normal form if it is a conjunction of disjunc-
tions of literals. The class of such formulas is denoted by CNF. It
is convenient to also view a CNF formula as a set of clauses and a
clause as a set of literals. A formula is monotone if it does not con-
tain negations. Horn formulas are CNF formulas with at most one
positive literal per clause.

Given some formula ϕ we denote by var (ϕ) the set of variables
occurring in ϕ. An interpretation I ⊆ var (ϕ) is a subset of the
variables. An interpretation I is called a model (of formula ϕ) if ϕ
is satisfied by setting the variables in I to true and the variables in
var (ϕ) \ I to false. In this case we write I |= ϕ. The weight of an
interpretation (model) is its cardinality. We call a modelM (subset)
minimal if there exists no model M′ ⊂ M, i.e., M′ is a proper
subset ofM.
Assignments and reduced formulas. Given a formula ϕ, an assign-
ment of a set V ⊆ var (ϕ) is a pair (T ,F) such that T ∪F = V and
T ∩F = ∅. The set T denotes the variables that are set to true; the set
F those that are set to false. Given an assignment (T ,F) and a CNF

formula ϕ, the reduced formula ϕ[T ,F] is ϕ where all variables in
T are set to true and all variables in F are set to false. More specif-
ically, ϕ[T ,F] is obtained from ϕ by first removing all clauses that
contain variables in T as positive literals or variables in F as nega-
tive literals and secondly, removing all remaining literals of variables
in T ∪ F . In case the empty clause is produced by this procedure,
ϕ[T ,F] is not satisfiable and hence we define ϕ[T ,F] := {∅}.
Parameterized complexity theory. We denote the input size, i.e.,
the size of the encoding of the instance, by n. In contrast to classi-
cal complexity theory, a parameterized complexity analysis studies
the runtime of an algorithm with respect to one or more parameters
k1, . . . , kl ∈ N together with the input size n. A problem parame-
terized by k1, . . . , kl is fixed-parameter tractable (fpt) if there exists
a computable function f and a constant c such that there is an al-
gorithm solving it in time O(f(k1, . . . , kl) · nc). Such an algorithm
is called fixed-parameter tractable as well. We define parameterized

problems as subsets of Σ∗ × N, where Σ is the input alphabet. If
a problem is parameterized by two or more parameters, the second
component of an instance (x, k) corresponds to the sum of all param-
eter values. The class FPT consists of all parameterized problems
that are fixed-parameter tractable. In order to show parameterized in-
tractability results, we make use of fpt-reductions.

Definition. Let L1 and L2 be parameterized problems, i.e., L1 ⊆
Σ∗1 × N and L2 ⊆ Σ∗2 × N. An fpt-reduction from L1 to L2 is a
mapping R : Σ∗1 × N→ Σ∗2 × N such that

1. (I, k) ∈ L1 iff R(I, k) ∈ L2.
2. R is computable by an fpt-algorithm with parameter k.
3. There is a computable function g such that forR(I, k) = (I ′, k′),
k′ ≤ g(k) holds.

We now define the parameterized complexity classes that will be
needed in this work. A central problem, which can be used to de-
fine the so-called W-hierarchy, is WSAT=. Given a CNF formula ϕ
and an integer k, the question is whether ϕ can be satisfied by setting
exactly k variables to true. W[1] can be defined as the class of prob-
lems fpt-reducible to WSAT= restricted to CNF formulas with clause
size at most 2 (parameterized by the weight k). The general WSAT=

is W[2]-complete. The class para-NP [8] is defined as the class of
all problems which can be solved in fpt-time on a nondeterminis-
tic Turing machine. In particular all unparameterized problems that
are in NP are in para-NP for any parameterization. If a problem re-
mains NP-hard even when the parameter is set to a constant value, it
is para-NP-hard. The following relations between these complexity
classes are known: FPT ⊆ W[1] ⊆ W[2] ⊆ para-NP. It is widely
believed that problems that are hard for W[1] or higher classes are
not fpt, i.e., FPT 6= W[1]. Further details can be found, for example,
in [4, 9].

3 Small Model Circumscription
Before we introduce the decision problem SMALL MODEL CIR-
CUMSCRIPTION, we give some fundamental definitions.

Definition. Let ψ be a formula and P , Q and Z pairwise disjoint
sets with P ∪Q ∪ Z = var (ψ). Given two assignments (T ,F) and
(T ′,F ′) with T ′ ∪ F ′ = T ∪ F it holds that (T ′,F ′) ≺〈P,Q,Z〉
(T ,F) if T ′ ∩ P ⊂ T ∩ P and T ′ ∩ Q = T ∩ Q. Given
two interpretations I, I′ ⊆ var (ψ) it holds that I′ ≺〈P,Q,Z〉 I if
(I′, var (ψ) \ I′) ≺〈P,Q,Z〉 (I, var (ψ) \ I).

Definition. A model M of some formula ψ is a 〈k;P,Q,Z〉-
minimal model of ψ if there exists no M′ |= ψ with |M′| ≤ k
andM′ ≺〈P,Q,Z〉M.

In this work we will study the complexity of the following decision
problem.

SMALL MODEL CIRCUMSCRIPTION (SMC)
Instance: A tuple (ϕ, π, k, P,Q,Z), where ϕ and π are

CNF formulas such that var (π) ⊆ var (ϕ), k ∈
N and three pairwise disjoint sets P , Q and Z
such that P ∪Q ∪ Z = var (ϕ).

Question: Is there a 〈k;P,Q,Z〉-minimal modelM of ϕ
with |M| ≤ k that is also a model of π?

SMC was first defined in [12] with the restriction that Q = ∅. We
perform a complete parameterized complexity analysis of SMC with

Table 1. List of considered parameters. Unless otherwise mentioned all
these parameters refer to ϕ.

k the maximum weight of the minimal model searched for
d the maximum clause size
d+, d− the maximum positive/negative clause size, i.e., only

positive/negative literals are counted
h the number of non-Horn clauses
b the size of a strong Horn backdoor set (strong Horn

backdoor sets will be explained in Section 5)
d+π the maximum positive clause size in π
‖π‖ the length of π, i.e., the total number of variable occur-

rences in π
|P |, |Q|, |Z| the cardinality of the set P /Q/Z

respect to the parameters listed in Table 1. Thereby we show for each
combination of parameters either a fixed-parameter tractability or a
parameterized hardness result.

The first result studies SMC parameterized by the number of vari-
ables var (ϕ) = P ∪Q∪Z. TheO(4var (ϕ) ·n) runtime of the trivial
algorithm (guessing a model, then checking minimality) can be im-
proved if we distinguish between the three types of variables.

Proposition 1. SMC can be solved in time O
(
2|Q| · 3|P | · 4|Z| · n

)
and is therefore fpt with respect to |P |, |Q| and |Z|.

Proof. We consider all assignments of var (ϕ). There are 2|var (ϕ)| =
2|P | · 2|Q| · 2|Z| of them. For the minimality check observe that the
assignment of the Q-variables is fixed. Thus, there are at most 2|P | ·
2|Z| sets to be considered. We can, however, establish a tighter bound
on the variables in P . For each assignment of P setting i variables to
true, we have to consider 2i − 1 subsets. Moreover, for each i there
are
(|P |
i

)
possible assignments. Hence considering all assignments of

var (ϕ) and verifying minimality requires 2|Q| · 4|Z| ·
∑|P |
i=0

((|P |
i

)
·

(2i − 1)
)
· O(n) = O

(
2|Q| · 3|P | · 4|Z| · n

)
time.

4 Fpt-Algorithms Based on Bounded Search Trees

The fpt-algorithms in this section are based on bounded search trees,
i.e., the size of the search tree can be bounded with respect to the
parameters. This approach has already been successfully applied
in [16] for finding minimal models. We extend this approach to
〈k;P,Q,Z〉-minimal models. In this paper we will frequently make
use of a recursive procedure called branch(ψ, k,S), which uses a
bounded search tree. This procedure returns a set of some (but pos-
sibly not all) models of ψ that (i) have weight≤ k and (ii) are super-
sets of S ⊆ var (ϕ). If a model satisfying (i) and (ii) is minimal, it is
guaranteed to be included in the set.

The main idea of this procedure is as follows: If every clause in
ψ[S, ∅] contains a negative literal then S is a model for ψ and is
returned as a candidate for being a minimal model. Since we are
looking for minimal models it certainly makes no sense to continue
on this branch. If there exists a purely positive clause in ψ[S, ∅], let
(x1 ∨ . . . ∨ xc) be this clause. Then the procedure branches on this
clause by calling branch(ψ, k,S ∪ {xi}) for each i ∈ [c]. In each
model of ψ[S, ∅] at least one of these variables has to be true.

Since branch(ψ, k,S) considers only models of weight ≤ k, the
maximum depth of the recursion is k. Observe that the runtime of
branch(ψ, k) is bounded byO((d+)k ·n). A more detailed descrip-
tion of branch can be found in [16]. To simplify the notation we
write branch(ψ, k) for branch(ψ, k, ∅). The following fact will be
essential for the correctness of some of the algorithms for SMC.

Lemma 2 (cf. [16]). The set of models returned by branch(ψ, k)
contains all subset minimal models of ψ ∈ CNF with weight ≤ k.

We are now prepared to present the first algorithm.

Algorithm 1: Fpt-algorithm for k, d+, |Q| and |Z| – Theorem 3

1 foreach assignment (T ,F) of Q ∪ Z with |T | ≤ k do
2 C ← branch(ϕ[T ,F], k − |T |).
3 foreach modelM′ ∈ C do
4 LetM :=M′ ∪ T .
5 ifM |= π then
6 Let Q̂ := Q ∩M.
7 foreach P ′ ⊂ (M∩ P) do
8 Let ϕ′ := ϕ

[
P ′ ∪ Q̂, (P \ P ′) ∪ (Q \ Q̂)

]
.

9 C′← branch(ϕ′, k − |P ′ ∪ Q̂|).
10 if C′ 6= ∅ then consider next model in Line 3

11 return Yes

12 return No

Theorem 3. Algorithm 1 solves SMC in time

O
(
(max(|Q|+ |Z|, d+))

k · (d+ + 1)
k · k · n

)
and is therefore fpt with respect to k, d+, |Q| and |Z|.

Proof. Algorithm 1 works as follows. Line 1 considers all assign-
ments (T ,F) ofQ∪Z. While Z-variables – contrary toQ-variables
– do not have an impact on minimality, they may influence the sat-
isfiability of π. Therefore all assignments of the Z-variables (in π)
have to be considered. Notice that the formula ϕ[T ,F] contains only
P -variables. In Line 2 we employ branch to compute a set C of
models containing all minimal models of ϕ[T ,F] (cf. Lemma 2).
We are only interested in a model M′ ∈ C if M′ ∪ T |= π. Let
M :=M′ ∪ T . Note thatM has weight ≤ k. It remains to be ver-
ified that the modelM is 〈k;P,Q,Z〉-minimal. This is done in the
loop in Line 7. There we construct for each subset P ′ ⊂ M ∩ P
a reduced formula ϕ′. The formula ϕ′ is obtained from ϕ by set-
ting the variables in Q as in the assignment (T ,F) and the vari-
ables in P according to the subset P ′. Observe, that var (ϕ′) ⊆ Z.
If ϕ′ is satisfiable thenM is not 〈k;P,Q,Z〉-minimal and the next
model M′ ∈ C is considered in Line 3. If ϕ′ is not satisfiable for
all P ′ ⊂M∩P thenM is a 〈k;P,Q,Z〉-minimal model of ϕ that
additionally satisfies π.

Runtime. Observe that there are (|Q|+ |Z|)s many assignments
(T ,F) of Q ∪ Z with weight ≤ s, s ≤ k. Given a weight s as-
signment the set C – computed in Line 2 – is of cardinality at most
(d+)

k−s. This yields that the number of models M considered in
Line 4 is at most

∑k
s=0(|Q|+ |Z|)s ·(d+)

k−s ≤
∑k
s=0(max(|Q|+

|Z|, d+))k = (k+1)·(max(|Q|+|Z|, d+))k. Minimality is ensured
in the loop in Line 7. There for each subset ofM∩ P the set C′ is
computed. For a given modelM the runtime of the minimality check
is
∑k
i=0

(|M∩P |
i

)
· (d+)

k−i ·O(n) ≤
∑k
i=0

(
k
i

)
· (d+)

k−i ·O(n) =

(d+ + 1)
k · O(n).

Lemma 4. Let (ϕ, π, k, P,Q,Z) be an SMC instance. Further-
more, letM be a 〈k;P,Q,Z〉-minimal model of ϕ and a model of
π. ThenM is also a 〈k;P,Q,Z〉-minimal model of ϕ ∧ π.

Proof. Assume towards a contradiction thatM is not a 〈k;P,Q,Z〉-
minimal model of ϕ ∧ π. ClearlyM |= ϕ ∧ π. SinceM is not an
〈k;P,Q,Z〉-minimal model of ϕ∧π, there must be aM′ ≺〈P,Q,Z〉
M with |M′| ≤ k. However, thenM′ is also a model of ϕ which
contradicts the assumption thatM is a 〈k;P,Q,Z〉-minimal model
of ϕ.

The parameterization in the next theorem is almost the same as in
the previous one except that |Z| has been replaced with d+π .

Algorithm 2: Fpt-algorithm for k, d+, |Q| and d+π – Theorem 5

1 foreach assignment (T ,F) of Q with |T | ≤ k do
2 C ← branch(ϕ[T ,F] ∧ π[T ,F], k − |T |).
3 foreach modelM′ ∈ C do
4 M←M′ ∪ T
5 Let Q̂ := Q ∩M.
6 foreach P ′ ⊂ (M∩ P) do
7 Let ϕ′ := ϕ

[
P ′ ∪ Q̂, (P \ P ′) ∪ (Q \ Q̂)

]
.

8 C′← branch(ϕ′, k − |P ′ ∪ Q̂|).
9 if C′ 6= ∅ then consider next model in Line 3

10 return Yes

11 return No

Theorem 5. Algorithm 2 solves SMC in time

O
(
(max(|Q|, d+, d+π))

k · (d+ + 1)
k · k · n

)
and is therefore fpt with respect to k, d+, |Q| and d+π .

Proof. The minimality check in Algorithm 2 is identical to the one
in Algorithm 1. Observe that given an assignment of Q all rele-
vant models are produced by branch in Line 2. This follows from
Lemma 4 which implies that every 〈k;P,Q,Z〉-minimal model of
ϕ[T ,F] that is also a model of π[T ,F] is a 〈k;P,Q,Z〉-minimal
model of ϕ[T ,F] ∧ π[T ,F]. The time bound can be seen by argu-
ments similar to the ones in the proof of Theorem 3.

5 Fpt-Algorithms Based on Backdoor Sets
In this section we make use of strong Horn backdoor sets. A strong
Horn backdoor set of a formula ϕ is a set B ⊆ var (ϕ) such that for
each assignment (T ,F) of B, ϕ[T ,F] is a Horn formula. Consider
for example the formula ψ := (a∨b)∧ (¬d∨a∨c)∧ (b∨c). In this
case {a, b} is a strong Horn backdoor set of ϕ. A Horn formula has
the advantageous property that checking satisfiability by computing
its unique minimal model can be done in linear time [3].

Backdoor sets were introduced in the context of FPT in [19]. Find-
ing a strong Horn backdoor set of size b is equivalent to finding a
vertex cover of size b. The best known algorithm solves this problem
in O(1.2738b + b · n), see [2]. We do not include the vertex cover
computation in our algorithms and hence consider the backdoor set
as additional input.

Theorem 6. Given a strong Horn backdoor set B of cardinality b,
Algorithm 3 solves SMC in time

O
(
(max(1, d+π , b+ |Q|))k · (b+ 1)k · k · n

)
and is therefore fpt with respect to k, b, |Q| and d+π .

Algorithm 3: Fpt-algorithm for k, b, |Q| and d+π – Theorem 6

1 foreach assignment (T ,F) of B ∪Q with |T | ≤ k do
2 C ← branch(ϕ[T ,F] ∧ π[T ,F], k − |T |).
3 foreach modelM∈ C do
4 foreach assignment (T ′,F ′) of B ∪Q with

T ′ ∩Q = T ∩Q, T ′ ∩ P ⊆ T ∩ P and |T ′| ≤ k do
// ϕ[T ′,F ′] is a Horn formula

5 if ϕ[T ′,F ′] is satisfiable then
6 LetM′ be the unique minimal model of

ϕ[T ′,F ′].
7 ifM′ is of weight ≤ k − |T ′| and

(M′ ∪ T ′) ∩ P ⊂ (M∪ T) ∩ P then
8 Consider the next model in Line 3.

9 return Yes

10 return No

Proof. The algorithm starts by generating all assignments (T ,F)

of B ∪ Q of weight ≤ k (Line 1). Then, it executes the proce-
dure branch for the formula ϕ[T ,F] ∧ π[T ,F] in order to find
all minimal models of weight ≤ k − |T | (Line 2). It follows from
Lemma 4 that indeed all relevant models are considered this way.
For each model M returned by the procedure branch it holds that
M∪T |= ϕ∧π. The loop in Line 4 checks whetherM∪T is min-
imal. There each assignment (T ′,F ′) of B ∪ Q is considered with
T ′ ∩ Q = T ∩ Q, T ′ ∩ P ⊆ T ∩ P and |T ′| ≤ k. Notice that we
allow here that T ′ ∩ P = T ∩ P . For any such (T ′,F ′), ϕ[T ′,F ′]
is a Horn formula and hence we can compute the unique minimal
modelM′ in linear time. In caseM′ is of weight ≤ k − |T ′| and
fulfills (M′∪T ′)∩P ⊂ (M∪T)∩P , we know thatM∪T is not
〈k;P,Q,Z〉-minimal and the next model is considered in Line 3.
Otherwise, if no such M′ can be found in the loop, the algorithm
returns Yes.

There are (b+ |Q|)s assignments ofB∪Q of weight s ≤ k. Next
we consider the runtime of the branch procedure. Note that ϕ[T ,F]

contains at most one positive literal per clause and π[T ,F] contains
at most d+π positive literals per clause. Therefore, ϕ[T ,F]∧π[T ,F]

contains ≤ max(1, d+π) positive literals per clause. With a similar
calculation as in the proof of Theorem 3 we obtain that the first two
loops iterate over at most (k + 1) · (max(1, d+π , b+ |Q|))k models.

We now bound the time required to verify minimality. This mainly
depends on the number of considered subassignments (T ′,F ′). All
these subassignments have weight ≤ k and it has to hold that T ′ ∩
P ⊆ T ∩ P and T ′ ∩ Q = T ∩ Q. The variables in Z ∩ B may
vary between (T ′,F ′) and (T ,F). Hence the number of considered
subassignments is

∑k
s=0

(
k
s

)
· bk−s = (b + 1)k. The first factor in

this sum is the number of possibilities for T ′ ∩ P ⊆ T ∩ P where
|T ′ ∩ P | = s. The second factor is the number of possibilities to
choose Z-variables in B to be set to true (at most k − s many). For
each subassignment the unique minimal model of a Horn formula
has to be computed – in linear time.

Corollary 7. Algorithm 3 solves SMC in time

O
(
(max(1, d+π , h · d+ + |Q|))k · (h · d+ + 1)

k · k · n
)

and is therefore fpt with respect to k, d+, h, |Q| and d+π .

Proof. We use the fact that the set of all positive literals appearing in
non-Horn clauses forms a strong Horn backdoor set. The cardinality
of this backdoor set is at most h · d+. Thus, the fpt result follows
from Theorem 6. The runtime of Algorithm 3 applies as well.

Algorithm 4: Fpt-algorithm for b, |Q| and at least one of ‖π‖
and |Z| – Theorem 8

1 Let Zπ := var (π) ∩ Z.
2 foreach assignment (T ,F) of B ∪Q ∪ Zπ with |T | ≤ k do
3 if ϕ[T ,F] is satisfiable then // ϕ[T ,F] is Horn
4 LetM be the unique minimal model of ϕ[T ,F].
5 if |M| ≤ k − |T | andM∪ T |= π then
6 foreach assignment (T ′,F ′) of B ∪Q with

T ′ ∩Q = T ∩Q, T ′ ∩ P ⊆ T ∩ P and |T ′| ≤ k
do

7 if ϕ[T ′,F ′] is satisfiable then
8 LetM′ be the unique minimal model of

ϕ[T ′,F ′].
9 if M′ is of weight ≤ k − |T ′| and

(M′ ∪ T ′) ∩ P ⊂ (M∪ T) ∩ P then
10 Consider next assignment in Line 2.

11 return Yes

12 return No

Theorem 8. Given a strong Horn backdoor set B of cardinality b,
Algorithm 4 solves SMC in timeO

(
4b · 2|Q| · 2min(‖π‖,|Z|) · n

)
and

is therefore fpt with respect to b, |Q| and at least one of ‖π‖ and |Z|.

Proof. The algorithm considers all assignments (T ,F) of B ∪Q ∪
Zπ . This means that we only consider Z-variables in this assignment
that appear either in B or π. If a Z-variable is not contained in π, it
can vary without influencing the satisfiability of π. Furthermore, the
truth value of such a Z-variable is determined by the assignment of
B. In Line 4 the formula ϕ[T ,F] is a Horn formula whose unique
minimal model can be computed in linear time. Checking whether
the modelM∪ T is of weight ≤ k and whether π is satisfied can
also be done in linear time. If such a model is found we have to check
whether the model is minimal. The minimality check is identical to
the one in Algorithm 3.

In Line 2 the number of considered assignments is at most 2|B| ·
2|Q| · 2|Z∩var (π)|. The minimality check is done only with respect to
variables in B since the variables in Q are fixed and the values of
variables in P \ B are implied by the variables in B. Therefore, at
most 2b − 1 subsets have to be checked.

Corollary 9. Algorithm 4 solves SMC in time

O
(
4h·d

+

· 2|Q| · 2min(‖π‖,|Z|) · n
)

and is therefore fpt with respect to d+, h, |Q| and at least one of ‖π‖
and |Z|.

Proof. In Corollary 7 we have already used the fact that b ≤ h · d+.
This time we use it to obtain the above results from Theorem 8.

6 Hardness Results for SMC
In the previous sections several fpt-algorithms have been presented.
As an immediate consequence SMC is also fpt with respect to ev-
ery superset of these combinations of parameters. We are now going
to show that these are all fpt-algorithms possible for the parameters
listed in Table 1. This is achieved by showing parameterized hardness
results for all remaining combinations of parameters. This completes
our parameterized complexity analysis of SMC.

The next theorem shows that |Q| has to be included in any com-
bination of parameters yielding an fpt result. This is shown by prov-
ing hardness of SMC with respect to all parameters except |Q|. The
proof builds upon Theorem 14 in [16] but extends the construction in
such way that even the parameter d can be bounded.

Theorem 10. SMC parameterized by k, d, d+, d−, h, b, d+π , ‖π‖,
|P | and |Z| is W[1]-hard.

Proof. We give an fpt-reduction from the INDEPENDENT SET prob-
lem. Given a graph (V,E) and an integer s, the INDEPENDENT SET

problem asks for a subset V ′ of the vertices of cardinality s such
that the graph does not contain edges between vertices in V ′. This
problem is W[1]-complete when parameterized by s, see e.g. [4].

We construct an SMC instance as follows. Let the vertices be
V = {v1, . . . , vm}. The variables used in ϕ are going to be
{v1, . . . , vm} ∪ {v11 , . . . , v1m, . . . , vs1, . . . , vsm} ∪ {c1, . . . , cs}. We
construct the formulas

ϕIS :=
∧

{x,y}∈E

(¬x ∨ ¬y) ϕ1 :=
∧
i∈[m]

∧
1≤l<l′≤s

(¬vli ∨ ¬vl
′
i)

ϕ2 :=
∧
i∈[m]

∧
l∈[s]

(vli → vi) ϕ3 :=
∧
l∈[s]

∧
i∈[m]

(vli → cl).

We now define ϕ := ϕIS ∧ ϕ1 ∧ ϕ2 ∧ ϕ3, π := c1 ∧ . . . ∧ cs
and k := 3s. The SMC instance is then given by (ϕ, π, k, P,Q,Z),
where P := {c1, . . . , cs}, Q := var (ϕ) \P and Z := ∅. Recall that
the variables in Q are not subject to minimization. We continue by
explaining the functionality of the subformulas. Subformula ϕIS en-
codes the independent set property. It enforces that it is not possible
to choose two vertices connected by an edge. Subformula ϕ1 ensures
that it is not possible to set more than one copy of each vertex to true.
Subformula ϕ2 ensures that a vertex has to be in the model if one of
its copies is in the model. Subformula ϕ3 together with π enforces
that at least s vertices are chosen to be in the independent set. The
correctness proof is omitted due to space constraints.

We are now going show that all parameters can be bounded in
terms of s. Observe that d+π = 1 and ‖π‖ = s since all clauses in
π are of size one and there are exactly s of them. All clauses in ϕ
are of size two and hence d, d+ and d− are ≤ 2. There are no non-
Horn clauses in ϕ. Thus, b and h are equal to 0. Finally, observe that
k = 3s, |P | = s and |Z| = 0.

Theorem 11. SMC parameterized by k, d, d+, d−, h, b, |P | and
|Q| is W[2]-hard.

Proof. We reduce from the W[2]-complete MONOTONE WEIGHTED

SATISFIABILITY problem [4, 9]. Given a monotone formula ψ

in CNF and an integer k′ this problem asks whether there is a
model of ψ setting exactly k′ variables to true. The SMC instance

(ϕ, π, k, P,Q,Z) is defined as ϕ :=
∧
x∈var (ψ)(x ∨ ¬x), π := ψ,

k := k′, P := ∅, Q := ∅ and Z := var (ϕ). The correctness fol-
lows from the monotonicity of the problem, i.e., each superset of a
model is a model as well. The parameter bounds are d ≤ 2, d+ ≤ 1,
d− ≤ 1 and h = b = |P | = |Q| = 0.

Theorem 12. SMC parameterized by d, d+, d−, h, b, d+π , |P | and
|Q| is para-NP-hard.

Proof. We reduce from the NP-complete 3-SAT problem, i.e., the
satisfiability problem over propositional formulas in 3-CNF (which
are CNF formulas with clause size at most 3). Given a formulaψ in 3-
CNF we create an SMC instance by setting ϕ :=

∧
x∈var (ψ)(x∨¬x),

π := ψ, k := |var (ψ)| (this is possible since k is not a parameter in
this reduction), P := ∅, Q := ∅ and Z := var (ψ). Concerning the
parameters, we can bound d+π by 3, while d ≤ 2, d+ ≤ 1, d− ≤ 1

and h = b = |P | = |Q| = 0.

The last two theorems make use of results for the Weighted Mini-
mal Model SAT problem (WMMSAT) discussed in [16]. This prob-
lem is a special case of SMC where var (ϕ) = P . In both proofs the
minimization is irrelevant and hence it does not matter whether the
variables of ϕ are contained in P , Q or Z.

Theorem 13 (follows from [16], Thm 14). SMC parameterized by
k, d−, h, d+π , ‖π‖ and two elements of {P,Q,Z} is W[1]-hard.

Theorem 14 (follows from [16], Prop 18). SMC parameterized by
d, d+, d−, d+π , ‖π‖ and two elements of {P,Q,Z} is para-NP-hard.

This concludes our parameterized analysis. We remark that a pa-
rameterized hardness result with respect to a set of parameters im-
plies hardness for any subset of these parameters. Using this fact, one
can check that the fpt-algorithms together with the hardness results
indeed cover all 211 combinations of parameters.

7 Conclusion
In this paper we have performed a complete parameterized complex-
ity analysis of SMC with respect to the parameters in Table 1. An
interesting observation is that Algorithm 4 does not make use of the
parameter k. Hence the runtime upper bound is not affected if we
set k = var (ϕ) (i.e., we ask for models containing at most all vari-
ables). This effectively eliminates the restriction to small models for
Algorithm 4. However, all other algorithms require this parameter.

SMC restricts the number of P -, Q- and Z-variables set to true in
a model. In some settings it makes more sense to limit only the num-
ber of P -variables set to true. The number of Q- and Z-variables
in the model would be irrelevant, e.g., because these are auxiliary
variables. It remains future work to explore the parameterized com-
plexity of the parameter “number of P -variables set to true”.

SMC asks whether there exists a 〈k;P,Q,Z〉-minimal model and
is therefore a brave reasoning problem. Additional insight can be
gained from analyzing the dual cautious reasoning problem, i.e., the
question of whether all 〈k;P,Q,Z〉-minimal models satisfy a certain
property. Observe that, for example, Algorithm 1 requires only small
modifications to be able to handle cautious reasoning. In contrast,
Algorithm 2 only generates models that satisfy π and is therefore not
applicable to cautious reasoning.

Finally, improving the runtime of the presented algorithms, the
study of further parameters and the search for kernelization re-
sults [14] is left as future work as well.

REFERENCES
[1] Marco Cadoli and Maurizio Lenzerini, ‘The complexity of proposi-

tional closed world reasoning and circumscription’, J. Comput. Syst.
Sci., 48(2), 255–310, (1994).

[2] Jianer Chen, Iyad A. Kanj, and Ge Xia, ‘Improved upper bounds for
vertex cover’, Theor. Comput. Sci., 411(40-42), 3736–3756, (2010).

[3] William F. Dowling and Jean H. Gallier, ‘Linear-time algorithms for
testing the satisfiability of propositional Horn formulae’, J. Log. Pro-
gram., 1(3), 267–284, (1984).

[4] Rodney G. Downey and Michael R. Fellows, Parameterized Complex-
ity, Springer, 1999.

[5] Thomas Eiter and Georg Gottlob, ‘Propositional circumscription and
extended closed-world reasoning are ΠP

2 -complete’, Theor. Comput.
Sci., 114(2), 231–245, (1993).

[6] Paolo Ferraris, Joohyung Lee, and Vladimir Lifschitz, ‘Stable models
and circumscription’, Artif. Intell., 175(1), 236–263, (2011).

[7] Johannes Klaus Fichte and Stefan Szeider, ‘Backdoors to tractable
answer-set programming’, in Proc. of IJCAI 2011, pp. 863–868. IJ-
CAI/AAAI Press, (2011).

[8] Jörg Flum and Martin Grohe, ‘Describing parameterized complexity
classes’, Inf. Comput., 187(2), 291–319, (2003).

[9] Jörg Flum and Martin Grohe, Parameterized Complexity Theory,
Springer, 2006.

[10] Michael Gelfond, Halina Przymusinska, and Teodor C. Przymusinski,
‘On the relationship between circumscription and negation as failure’,
Artif. Intell., 38(1), 75–94, (1989).

[11] Georg Gottlob, Reinhard Pichler, and Fang Wei, ‘Bounded treewidth as
a key to tractability of knowledge representation and reasoning’, Artif.
Intell., 174(1), 105–132, (2010).

[12] Georg Gottlob, Francesco Scarcello, and Martha Sideri, ‘Fixed-
parameter complexity in AI and nonmonotonic reasoning’, Artif. Intell.,
138(1-2), 55–86, (2002).

[13] Georg Gottlob and Stefan Szeider, ‘Fixed-parameter algorithms for ar-
tificial intelligence, constraint satisfaction and database problems’, The
Computer Journal, 51(3), 303–325, (2008).

[14] Jiong Guo and Rolf Niedermeier, ‘Invitation to data reduction and prob-
lem kernelization’, SIGACT News, 38, 31–45, (March 2007).

[15] Michael Jakl, Reinhard Pichler, and Stefan Woltran, ‘Answer-set pro-
gramming with bounded treewidth’, in Proc. of IJCAI 2009, pp. 816–
822. IJCAI/AAAI Press, (2009).

[16] Martin Lackner and Andreas Pfandler, ‘Fixed-parameter algorithms for
finding minimal models’, in Proc. of KR 2012. AAAI Press, (2012). To
appear.

[17] Paolo Liberatore and Marco Schaerf, ‘Reducing belief revision to cir-
cumscription (and vice versa)’, Artif. Intell., 93, 261–296, (1997).

[18] John McCarthy, ‘Circumscription - a form of non-monotonic reason-
ing’, Artif. Intell., 13(1-2), 27–39, (1980).

[19] Naomi Nishimura, Prabhakar Ragde, and Stefan Szeider, ‘Detecting
backdoor sets with respect to Horn and binary clauses’, in Proc. of SAT
2004, (2004).

[20] Reinhard Pichler, Stefan Rümmele, Stefan Szeider, and Stefan Woltran,
‘Tractable answer-set programming with weight constraints: Bounded
treewidth is not enough’, in Proc. of KR 2010, pp. 508–517. AAAI
Press, (2010).

[21] Raymond Reiter, ‘On closed world data bases’, in Logic and Data
Bases, pp. 55–76. Plemum Press, (1977).

[22] Miroslaw Truszczynski, ‘Computing large and small stable models’,
Theory and Practice of Logic Programming, 2(1), 1–23, (2002).

[23] Ryan Williams, Carla P. Gomes, and Bart Selman, ‘Backdoors to typi-
cal case complexity’, in Proc. of IJCAI 2003, pp. 1173–1178. Morgan
Kaufmann, (2003).

