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Abstract
We investigate the possibility of strategic voting
in approval-based multiwinner rules. In partic-
ular, we define three axiomatic properties that
guarantee resilience to certain forms of strate-
gic voting: independence of irrelevant alternatives
(IIA), monotonicity, and SD-strategyproofness. In
this paper, we systematically analyze multiwinner
rules based on these axioms and provide a fine-
grained picture of their resilience to strategic vot-
ing. Both our axiomatic and experimental analy-
sis show that approval-based multiwinner rules are
generally very susceptible to strategic voting—with
one exception: Multiwinner Approval Voting.

1 Introduction
In a multiwinner election, we are given a set of candidates, a
set of voters with preferences over the candidates, and an in-
teger k; the goal is to select a subset of exactly k candidates,
called a committee. In this paper, we consider rules where
the voters express their preferences by approving a subset of
candidates. We refer to such rules as approval-based commit-
tee rules, in short: ABC rules. Our goal is to study strategic
voting in this setting. In particular, we want to establish a
model for strategic voting (i) that is applicable to arbitrary
ABC rules, (ii) that does not require the assumption of vot-
ing rules being resolute (i.e., the assumption that tie-breaking
mechanisms exist), and (iii) without the need of an auxiliary
utility function determining the success of strategic voting.
To the best of our knowledge, all previous studies on this topic
failed at least one of these three principles (cf. Related Work).

We begin our study by introducing three axiomatic prop-
erties which guarantee resilience to certain forms of strategic
voting. The first axiom is independence of irrelevant alterna-
tives (IIA), an adaptation of the Arrow’s IIA axiom [1950] to
the setting of ABC rules. IIA requires that the relative merit
of two committees is not influenced by candidates outside of
both committees. This axiom can be considered an incen-
tive for voters to truthfully reveal preferences as it prevents a
certain form of strategic voting, i.e., altering one’s vote with
respect to “irrelevant” candidates to manipulate the outcome.

The second axiom is monotonicity, which guarantees that
it is never disadvantageous to truthfully revealing one’s ap-

proved candidates. However, it does not guarantee that ap-
proving of additional candidates, i.e., candidates that are ac-
tually disliked, is harmful. Consequently, monotonicity and
IIA can be seen as complementary axioms. In Section 2.2,
we provide two examples that further illustrate the connec-
tion between strategic voting, IIA and monotonicity.

Finally and most importantly, we introduce SD-strategy-
proofness, which is an adaptation of the homonymous axiom
from the literature on randomized social choice [Bogomol-
naia and Moulin, 2001]. This axiom describes a strong form
of resilience to strategic voting. Our further theoretical and
experimental analysis is based on these three axioms. We ob-
tain the following results:

• We first consider the class of ABC counting rules, i.e., rules
that generalize positional scoring rules to the ABC setting.
Within this class we fully characterize all rules satisfying IIA
and all satisfying monotonicity. We furthermore show that
Multiwinner Approval Voting (AV) is the only ABC count-
ing rule that satisfies both IIA and monotonicity. Finally, we
show that AV is also the only ABC counting rule satisfying
SD-strategyproofness.

• Second, we perform an axiomatic analysis and examine
popular ABC rules with respect to our three axioms. Our re-
sults show that while some of the commonly studied rules
satisfy either IIA or monotonicity, AV is the only rule among
those considered here that satisfies both axioms.

• Finally, through a series of experiments, we quantify the
level of resilience to strategic voting offered by different ABC
rules (we measure it as a fraction of profiles where strate-
gic voting is possible). Our conclusion is that rules which
are more similar to AV (i.e., rules that follow the principle
of individual excellence rather than diversity [Faliszewski et
al., 2017]) are less manipulable. Our results reinforce the
message of Barrot et al. [2017] that more egalitarian rules
are more susceptible to manipulations (and such rules are, in
some sense, diversity-oriented).

Related Work. For an overview on computational and ax-
iomatic properties of multiwinner rules, we refer the reader
to book chapters by Faliszewski et al. [2017] and Kil-
gour [2010]. Recently, Peters [2018] proved that there exist
no resolute strategyproof ABC choice functions that are also
proportional. Bredereck et al. [2017a] studied the impact of
(small) changes in the input profile on winning committees.



Laslier and Van der Straeten [2016] analyzed strategic voting
for AV in a probabilistic, game-theoretic model. Finally, we
would like to mention several important works on computa-
tional aspects of strategic voting [LeGrand et al., 2007; Meir
et al., 2008; Obraztsova et al., 2013; Baumeister et al., 2015;
Barrot et al., 2017; Bredereck et al., 2017b].

2 Preliminaries
For each i, j ∈ N let [i, j] = {i, i+1, . . . , j}. Let [j] = [1, j].
For a set X and integer ` ∈ N we use P`(X) to denote the
set of all size-` subsets of X .

Let C = {c1, . . . , cm} be a set of candidates. We identify
the universe of all possible voters with the set of natural num-
bers. For each finite subset V = {v1, . . . , vn} ⊂ N, an ap-
proval profile over V , A = (A(v1), . . . , A(vn)), is an n-tuple
of subsets ofC; we callA(vi) the approval set of voter vi. Let
A(C, V ) denote the set of all approval profiles over V . Let
k, k < m, denote the required size of the committee. We call
the elements of Pk(C) as committees. An approval-based
committee ranking rule (ABC ranking rule) is a function F
that maps approval profiles to weak orders over committees.
We write W1 �F(A) W2 if committee W1 is preferred to
W2 according to the weak order F(A). Further, we define
W1 �F(A) W2 and W1 =F(A) W2 analogously. We say that
a committee is winning if it is a maximal element in F(A).

An approval-based committee choice rule (ABC choice
rule) is a function R that takes approval profiles and returns
sets of committees, again referred to as winning committees.
Note that every ABC ranking rule F can naturally be trans-
lated to an ABC choice rule by returning all maximal ele-
ments in F(A). An ABC ranking rule F is trivial if for all
profile A and committees W1,W2 ∈ Pk(C) it holds that
W1 =F(A) W2. An ABC choice rule R is trivial if for all
profiles A it holds thatR(A) = Pk(C).

2.1 Hierarchy of ABC Rules
In this section we recall the definitions of those ABC rules
that are the focus of this paper.

ABC Counting Rules
A counting function is a mapping f : [0, k]× [0,m]→ R that
is non-decreasing with respect to the first argument. Intu-
itively, f(x, y) is the score that a committee W obtains from
a voter that approves x members of W and y candidates in
total. Formally, the score of a committee W in A is

scf (W,A) =
∑
v∈V

f(|A(v) ∩W |, |A(v)|). (1)

An ABC ranking rule F is a counting rule if there exists a
counting function f such that W1 �F(A) W2 if and only if
f(W1, A) > f(W2, A). Analogously, we say that an ABC
choice rule R is a counting rule if there exists a counting
function f such that for each profile A the set R(A) consists
of those committees with the highest score.

ABC counting rules have been introduced by Lackner and
Skowron [2017]. This class is very broad, and contains, in
particular, the following two important subclasses.

Thiele Methods
This class of rules originated in the 19th century due to the
works of Thiele [1895]. For a sequence of weights w =
(w1, w2, . . .) we define the w-score of a committee W as∑

v∈V
∑|W∩A(v)|

j=1 wj ; the committees with highest w-score
are the winners according to the w-Thiele method. One can
easily observe that Thiele methods are ABC counting rules
defined by counting functions that ignore the second argu-
ment. Formally, an ABC ranking rule F is a Thiele method
if it is implemented by a counting function f(x, y) such that
f(x, y) = f(x, y′) for all x ∈ [0, k] and y, y′ ∈ [0,m].

Dissatisfaction Counting Rules
This class is defined analogously to Thiele methods, but the
score that a voter assigns to a committee W depends on the
number of approved candidates who are not contained in W .
Formally, an ABC ranking ruleF is a dissatisfaction counting
rule if it is implemented by a counting function f(x, y) with
the following property: there exists a function g : [m] → R
such that f(x, y) = g(y−x) for all x ∈ [0, k] and y ∈ [0,m].

Concrete Examples of ABC Rules
We list a few important examples of ABC ranking/choice
rules. We will define ABC counting rules by giving their
defining counting functions. For a more thorough discus-
sion of multiwinner rules we refer the reader to the corre-
sponding surveys [Faliszewski et al., 2017; Kilgour, 2010;
Laslier and Sanver, 2010]. If not noted otherwise, rules be-
low have first been discussed by Thiele [1895].

Multiwinner Approval Voting (AV) is a Thiele method im-
plemented by the counting function fAV(x, y) = x. In
fact, Multiwinner Approval Voting is also a dissatisfaction
counting rule as it is implemented by f(x, y) = x− y. We
omit the proof of this statement.

Proportional Approval Voting (PAV) is a Thiele method
implemented by fPAV(x, y) =

∑x
i=1

1/i.

Approval Chamberlin–Courant (CC) is also a Thiele
method, implemented by fCC(x, y) = min(1, x).

Satisfaction Approval Voting (SAV) is an ABC counting
rule introduced by Brams and Kilgour [2014] which is nei-
ther a Thiele method nor a dissatisfaction counting rule. It
is implemented by fSAV(x, y) =

x
y .

While all previous rules can be viewed both as ABC rank-
ing rules and ABC choice rules, the following two do not fit
well into the framework of ABC ranking rules because they
do not allow to compare non-winning committees.

Sequential Thiele Methods. Letw = (w1, w2, . . .). The se-
quential w-Thiele method starts with an empty committee
W = ∅ and works in k steps; in the i-th step it adds to the
committee W a candidate c which maximizes the w-score
of committee W ∪ {c}.

Reverse-Sequential Thiele Methods. These rules are simi-
lar to sequential Thiele methods but start with the commit-
tee W = C and remove candidates iteratively until it has
the desired size k. In each step the method removes a can-
didate c from the committeeW whose removal reduces the
w-score of W the least.
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Note that AV, Sequential AV and Reverse-Sequential AV
are the same rule; all three rules select k candidates with the
largest number of approving votes. For all other Thiele meth-
ods this does not hold; their sequential and reverse-sequential
variants are different from the respective original methods.

Below we recall the definitions of three other voting meth-
ods which are not ABC counting rules.
Monroe’s Approval-Based Rule [Monroe, 1995]. Given a

committee W , a balanced assignment is a function
φ : V →W mapping n voters to the k committee members
such that

⌊
n
k

⌋
≤ |φ−1(c)| ≤

⌈
n
k

⌉
for each c ∈ W . The

score of an assignment φ is defined as |{v ∈ V | φ(v) ∈
A(v)}|. The Monroe score of a committee W is the max-
imum score of any balanced assignment φ : V → W . The
Monroe rule returns committees ordered by their Monroe
score; committees with maximum score are winning.

Minimax Approval Voting (MAV) [Brams et al., 2007] is
based on the Hamming distance of a committee W to the
voters in V , defined as:

dH(W,V ) =
∑
v∈V

(|A(v) \W |+ |W \A(v)|).

For MAV, committees W win that minimize dH(W,V ).
Phragmén’s sequential rule [Phragmén, 1894] is an ABC

choice rule based on a load balancing mechanism. As un-
derstanding the definition of this rule is not essential for
our paper, we omit details and refer the reader to a recent
paper by Brill et al. [2017] and a survey by Janson [2016].

2.2 Axioms
In this section, we introduce and discuss formal definitions of
the axioms used in our further study. The first two axioms are
formulated only for ABC ranking rules (we omit correspond-
ing definitions for ABC choice rules).

For A ∈ A(C, V ), v ∈ V , and c ∈ C, let Av,+c denote the
profile that is identical to A except that voter v additionally
approves c, i.e., Av,+c(v) = A(v) ∪ {c}.
Definition 1 (Independence of irrelevant alternatives). An
ABC ranking rule F satisfies independence of irrelevant al-
ternatives (IIA) if for all A ∈ A(C, V ), W1,W2 ∈ Pk(C),
c ∈ C \ (W1 ∪W2), and v ∈ V it holds that W1 �F(A) W2

if and only if W1 �F(Av,+c) W2.
Definition 2 (Monotonicity). An ABC ranking rule F is
monotonic if for each W1,W2 ∈ Pk(C), A ∈ A(C, V ),
v ∈ V , and c ∈ W1 it holds that (i) if W1 �F(A) W2,
then W1 �F(Av,+c) W2, and (ii) if W1 �F(A) W2, then
W1 �F(Av,+c) W2.

To see the relation of these two axioms and strategic voting,
consider the following two examples.
Example 1 (monotonicity). Let A be a profile with A(1) =
A(2) = A(3) = {a, b, c}, A(4) = A(5) = {a, b, d}, and
A(6) = {a, d, e, f} and assume we intend to select a winning
committee of size k = 3. In this case, committee {a, b, d}
wins under PAV with a PAV-score of 9 + 2/3. In particular,
{a, b, d} has a higher score than {a, b, c} (which is 9.5). If
we assume that profile A reflects the voters’ true preferences,
voter 1 can benefit from approving only {c}. In this modified

profile, the committee {a, b, c} has a PAV-score of 8+ 2/3 and
is winning as {a, b, d} has a score of only 8 + 1/6. Hence,
with this form of strategic voting, voter 1 would benefit by
having all her approved candidates in the winning committee.
This kind of strategic voting is ruled out by the monotonicity
axiom, which—as we just saw—is not satisfied by PAV.

Example 2 (IIA). Now, let us consider Satisfaction Approval
Voting (SAV) and the profile A with A(1) = {a, b}, A(2) =
{a, c, d}, and A(3) = {e}. For k = 1, committee {e} wins
with a score of 1. The score of {a} is 5/6. If voter 1 would
change its vote to {a}, then committee {a} would win with a
score of 1 + 1/3; the score of {e} remains 1. We see that the
situation of voter 1 improves: after changing his vote an ap-
proved candidate wins the election. Note that the change in
the original profile concerned candidate b, but changed the
relative order of the committees {a} and {e}. This type of
strategic voting is ruled out by the independence of irrelevant
alternatives axiom, which SAV does not satisfy. Thiele meth-
ods, however, do satisfy IIA.

Let us now move to our last axiom concerning strate-
gyproofness. To be able to speak about strategic voting, as-
sumptions have to be made concerning the satisfaction of vot-
ers with committees. Our central assumption is that a voter v
prefers a committee W to W ′ if |W ∩A(v)| > |W ′ ∩A(v)|,
i.e., if voter v approves more candidates in W than in W ′.
Based on this assumption, we define the following notion of
strategyproofness, inspired by the idea of stochastic domi-
nance (SD) [Bogomolnaia and Moulin, 2001].

Definition 3. Let S ⊆ C be an approval set representing the
true preferences of some specific voter. A set of committees
X ⊆ Pk(C) stochastically dominates a set of committees
Y ⊆ Pk(C) subject to S if the following two conditions
hold:

1. For each ` ∈ N we have that the fraction of winning
committees in X that contain at least ` members of S is
at least as large as the fraction for Y , i.e.,

|{W ∈ X : |W ∩ S| ≥ `}|
|X|

≥ |{W ∈ Y : |W ∩ S| ≥ `}|
|Y |

2. There is ` ∈ N for which the above inequality is strict.

Given a profile A ∈ A(C, V ) and v ∈ V , let (A−v, T )
denote the profile identical to A except that the approval set
of voter v is changed to T .

Definition 4. Given a profile A ∈ A(C, V ) and an ABC
choice or ranking rule R, we say that a voter v ∈ V can
SD-manipulate if there exists a set T ⊆ C such that the
set of committeesR(A−v, T ) stochastically dominatesR(A)
subject to A(v). R is SD-strategyproof if for all profiles
A ∈ A(C, V ) no voter v ∈ V can SD-manipulate.

We note that for resolute rules SD-strategyproofness coin-
cides with cardinality strategyproofness [Peters, 2018].

3 Characterization Results
We first focus on ABC counting rules and present our main
characterization results within this class. We will use the fol-
lowing useful lemma of Lackner and Skowron [2017].
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Lemma 1. Let Dm,k = {(x, y) ∈ [0, k] × [0,m − 1] :
x ≤ y ∧ k − x ≤ m − y} and let f, h be counting func-
tions. If there exist c ∈ R and d : [m] → R such that
f(x, y) = c·h(x, y)+d(y) for all x, y ∈ Dm,k then f, h yield
the same ABC counting rule, i.e., for all approval profiles
A ∈ A(C, V ) and committees W1,W2 ∈ Pk(C) it holds
that W1 �f(A) W2 if and only if W1 �h(A) W2.

The following theorems establish that ABC ranking rules
satisfying IIA correspond to the class of Thiele methods,
whereas rules that satisfy monotonicity yield the class of dis-
satisfaction counting rules. Interestingly, the intersection of
these two classes contains exactly one non-trivial rule: AV.

Theorem 1. Thiele methods are the only ABC counting rules
that satisfy independence of irrelevant alternatives.

Proof. To see that Thiele methods satisfy independence of
irrelevant alternatives, let f implement a Thiele method and
let A ∈ A(C, V ), W1,W2 ∈ Pk(C), c ∈ C \ (W1 ∪W2),
and v ∈ V . It holds that scf (W1, A) = scf (W1, A

v,+c) and
scf (W2, A) = scf (W2, A

v,+c) and thus W1 �F(A) W2 if
and only if W1 �F(Av,+c) W2.

For the other direction, let F be an ABC counting rule sat-
isfying IIA; let f be the corresponding counting function. Re-
call that by Lemma 1 we can focus on f restricted to the do-
main Dm,k = {(x, y) ∈ [0, k]× [0,m−1] : x ≤ y∧k−x ≤
m − y}. We will show that for each y there exists a con-
stant cy ∈ R such that for all x with (x, y) ∈ Dm,k and
(x, y + 1) ∈ Dm,k we have

f(x, y + 1) = f(x, y) + cy. (2)

Assuming that (2) holds, we have that f(x, y′) − f(x, y) =∑
y≤z<y′ cz for x, y, y′ with (x, y), (x, y′) ∈ Dm,k and y′ ≥

y. We can define a counting function h(x, y) = f(x, y) −∑
0≤z<y cz . By Lemma 1, f and h implement F . Now,

h(x, y) = f(x, y)−
∑

0≤z<y

cz

= f(x, y′)−
∑

0≤z<y

cz −
∑

y≤z<y′

cz = h(x, y′),

and hence F is a Thiele method.
In order to show that (2) holds, we will show that for each

x, x′, and y with (x, y), (x′, y), (x, y+1), (x′, y+1) ∈ Dm,k

we have f(x, y + 1) − f(x, y) = f(x′, y + 1) − f(x′, y).
Observe that it is sufficient to show the above relation for
x′ = x+ 1, i.e., we want to show that

f(x, y + 1) + f(x+ 1, y) = f(x+ 1, y + 1) + f(x, y).

Let W1,W2 ∈ Pk(C) be such that |W1 ∩ W2| = k − 1,
i.e., there exists a single candidate c1 with c1 ∈W1 \W2 and
a single candidate c2 with c2 ∈ W2 \W1. Furthermore, let
us construct a profile A ∈ A(C, {1, 2}) with votes A(1) and
A(2) that are defined as follows: The first vote A(1) satisfies
|A(1)| = y + 1, c1 ∈ A(1), c2 /∈ A(1), and |A(1) ∩W1 ∩
W2| = x. Note that |A(1) ∩ W1 ∩ W2| = x, c1 ∈ A(1),
and c2 /∈ A(1) implies that |A(1) \ (W1 ∪W2)| = y − x.
To see that a sufficient number of candidates exists for this
construction, observe that |A(1)∪W1∪W2| = (y−x)+(k+

1). Since (x, y+1) ∈ Dm,k it holds that k− x ≤ m− y− 1
and hence (y − x) + (k + 1) ≤ m. We obtain the second
vote A(2) from A(1) by swapping c1 and c2 and removing
one candidate d ∈ A(1) \ (W1 ∪W2), i.e., A(2) = (A(1) ∪
{c2}) \ {c1, d} and |A(2)| = y. Such candidate d exists,
because otherwise we would have A(1) ⊆ W1 and hence
x + 1 = y + 1, which contradicts the fact that (x + 1, y) ∈
Dm,k (and thus x+ 1 ≤ y).

Let us argue that W1 =F(A) W2. For that, let us now
modify A so as to apply independence of irrelevant alter-
natives. Let A′ ∈ A(C, {1, 2}) with A′(1) = A(1) and
A′(2) = A(2) ∪ {d}. Let us consider a bijection σ : C → C
with σ(c1) = c2, σ(c2) = c1, and which is the identity else-
where. Note that σ(A′(1)) = A′(2) and vice versa; also
σ(W1) = W2 and vice versa. Thus, by neutrality1 of F we
infer that W1 =F(A′) W2, and by independence of irrelevant
alternatives that W1 =F(A) W2. The score of W1 in A is
equal to f(x+ 1, y + 1) + f(x, y) and the score of W2 in A
is equal to f(x, y + 1) + f(x+ 1, y). Since W1 =F(A) W2,
these scores need to be equal.

Theorem 2. Dissatisfaction counting rules are the only ABC
counting rules that satisfy monotonicity.

Proof. To see that dissatisfaction counting rules satisfy
monotonicity, let F be a dissatisfaction counting rule im-
plemented by the counting function f , for which there ex-
ists a function g such that f(x, y) = g(y − x) for each
x, y. Observe that g is necessarily non-increasing because
f(x, y) ≥ f(x′, y) for x ≥ x′. Now, consider a profile A
and two committees W1 and W2 such that W1 �F(A) W2, as
well as the profile Av,+c with c ∈W1.

We calculate the difference between the scores of com-
mittee W1 in profiles Av,+c and A. It holds that
scf (W1, A

v,+c) − scf (W1, A) = g(|A(v)| + 1 − (|A(v) ∩
W1| + 1)) − g(|A(v)| − |A(v) ∩W1|) = 0. For committee
W2 we calculate this difference by considering two cases. If
c ∈ W2 then—just as before—we have scf (W2, A

v,+c) −
scf (W2, A) = 0. If c /∈ W2 then scf (W2, A

v,+c) −
scf (W2, A) = g(|A(v)| + 1 − |A(v) ∩W2|) − g(|A(v)| −
|A(v) ∩ W2|) ≤ 0, since g is non-increasing. In both
cases, the score of committee W1 in profile Av,+c remains
at least as large as the score of committee W2, hence
W1 �F(Av,+c) W2. The same argument holds for
W1 �F(A) W2 and hence monotonicity holds.

The proof for the other direction is more complex. We omit
it due to space constraints.

We also have to omit the proof for the following theorem:

Theorem 3. Multiwinner Approval Voting is the only non-
trivial ABC counting rule that satisfies independence of irrel-
evant alternatives and monotonicity.

We see that IIA and monotonicity allow us to identify AV
within the class of ABC counting rules. As the following
theorem shows, the same holds for SD-strategyproofness:

1An ABC ranking rule F is neutral if for each bijection σ : C →
C and A,A′ ∈ A(C, V ) with σ(A) = A′ it holds for W1,W2 ∈
Pk(C) that W1 �F(A) W2 if and only if σ(W1) �F(A′) σ(W2).
Each ABC counting rule satisfies neutrality.
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Theorem 4. Multiwinner AV is the only non-trivial ABC
counting rules that satisfies SD-strategyproofness.

Proof. In order to prove that Multiwinner Approval Voting
satisfies SD-strategyproofness we will show an analogy be-
tween possible misreports of the voters and certain proper-
ties of the hypergeometric distribution. Consider an approval
profile A and fix a voter v. For c ∈ C, let s(c) = |v ∈
V : c ∈ A(v)| denote the approval score of candidate c.
Further let γ ≥ 0 such that |c ∈ C : s(c) ≥ γ| ≥ k and
|c ∈ C : s(c) > γ| ≤ k. Let Weach = {c ∈ C : s(c) > γ}
and Wtie = {c ∈ C : s(c) = γ}. Note that every winning
committee W it holds that Weach ⊆ W ⊆ Weach ∪ Wtie.
Finally, let xeach = |Weach∩A(v)| and xtie = |Wtie∩A(v)|.

Now, we make the crucial observation. Let P(b, w, s, r)
denote the (hypergeometric) probability that in the random
process of sampling s balls without replacement from an urn
containing b black balls and w white balls, we will get at
least r black balls. We observe that the fraction of winning
committees that contain at least ` members approved by v
is equal to P(b, w, s, r) with w = |Wtie| − xtie, b = xtie,
s = k − |Weach|, and r = ` − xeach. Hence, an SD-
manipulation is successful if the parameters b, w, s, r can be
changed in such a way that P(b, w, s, r) increases. We see:

• If v approves an additional (previously disapproved) can-
didate, this results in one of the following possible changes
of the parameters: (i) no change, (ii) moving a candi-
date from Wtie to Weach: wnew = w − 1, bnew = b,
snew = s − 1, rnew = r, or (iii) moving a candidate from
C \ (Wtie ∪Weach) to Wtie: wnew = w + 1, bnew = b,
snew = s, rnew = r. In each case it is easy to see that
P(bnew, wnew, snew, rnew) ≤ P(b, w, s, r).

• If v disapproves a previously approved candidate, then the
following changes are possible: (i) no change, (ii) moving
a candidate from Weach to Wtie: wnew = w, bnew = b+1,
snew = s + 1, rnew = r + 1, or (iii) moving a candidate
fromWtie to C \(Wtie∪Weach): wnew = w, bnew = b−1,
snew = s, rnew = r. Also here, in each of these cases, we
have that P(bnew, wnew, snew, rnew) ≤ P(b, w, s, r).

Each misreport can be represented as a combination of a num-
ber of the above two types of actions. Since each action does
not increase the probability, then the eventual probability af-
ter a misreport will not increase.

Now we will prove the other implication. Let R be a non-
trivial ABC counting rule implemented by a counting func-
tion f , and let us assume that R is SD-strategyproof. We
omit the proof thatR is a Thiele method, which uses the same
reasoning (but a different construction) as in the proof of The-
orem 1. Let g : [0, k]→ R such that f(x, y) = g(x).

We will now prove that for each x, 0 ≤ x ≤ k − 2, we
have that g(x + 1) − g(x) = g(x + 2) − g(x + 1), and by
that R is AV. Let us fix two committees, W1 and W2 such
that |W1 ∩W2| = k − 1. Let v1 denote a vote where x + 1
members of W1 and x members of W2 are approved. Let v′1
be constructed from v1 by approving one additional candidate
fromW1∩W2. Similarly, we construct v2 and v′2 by swapping
the two candidates fromW1\W2 andW2\W1 with each other
in v1 and v′1, respectively.

In the following, we use sums to indicate the concate-
nation of approval profiles. For each candidate c ∈ C,
we define E(¬c) to be a profile in which every subset of
C \ {c} is approved by exactly one voter. Since R is non-
trivial, it follows that all the committees that do not contain c
are winning in E(¬c). Similarly, for each subset S ⊆ C,
we let E(S) =

∑
c/∈S E(¬c). In the profile EW1,W2 =

E(W1 ∪W2) +E(W1 ∩W2) only W1 and W2 are winning.
This can be seen either by a direct proof using the fact that
R is a non-trivial ABC counting rule, or from the fact that
ABC counting rules satisfy the consistency axiom [Lackner
and Skowron, 2017], which yields this statement immedi-
ately. Further, assume that λ is a large number which ensures
that in the profile λEW1,W2 (i.e., λ many copies) the differ-
ence between the scores of W1, W2 and other committees is
sufficiently large.

Let us now assume towards a contradiction that g(x+1)−
g(x) 6= g(x + 2) − g(x + 1). We first consider the case
when g(x + 1) − g(x) > g(x + 2) − g(x + 1). Take the
(truthful) profile v′1 + v′2 + λEW1,W2

. In this profile W1 and
W2 are winning. However, if v′1 misreports v1, then the score
of W1 decreases by g(x + 2) − g(x + 1), while the score of
W2 decreases by g(x+1)− g(x). Thus, W1 will become the
only winner, which is preferred by v′1. Similarly, if g(x+1)−
g(x) < g(x+2)−g(x+1), we can take the (truthful) profile
v1+v2+λEW1,W2

, and we can observe that v1 can misreport
v′1, ensuring that W1 will be the only winning committee.
This completes the proof.

Theorem 3 and Theorem 4 highlight the close relation be-
tween IIA, monotonicity and SD-strategyproofness within the
class of ABC counting rules. However, outside of this class
there exist voting rules that satisfy IIA and monotonicity, but
are not SD-strategyproof. As an example consider the fol-
lowing rule: if there are fewer then k candidates who are ap-
proved by some voter, the rule works as the trivial rule, i.e.,
ranks all committees as equivalent. If there are at least k ap-
proved candidates, the rule returns a ranking with two equiv-
alence classes: all size-k subsets of the union of approved
candidates are ranked above all other committees. This rule
sometimes allows voters to change the outcome from extreme
indifference (all committees win) to a situation where only
one committee wins that contains all her approved candi-
dates, and thus is not SD-strategyproof. IIA and monotonic-
ity are satisfied by this rule. Similarly, there are rules that
are SD-strategyproof but fail IIA and monotonicity, since SD-
strategyproofness only applies to winning committees.

Finally, we note that if AV is used in conjunction with an
unfortunate tie-breaking rule (to make AV resolute), strategic
voting may again become possible.

Example 3. Let k = 3. Consider two votes A(v1) = {a, b}
and A(v2) = {c, d}, and AV with the tie-breaking rule
{a, b, e} � {c, d, a} � . . .. If v1 votes sincerely, {c, d, a}
wins and, thus, v1 has an incentive to misreport {a, b, e}.

4 Comparing Properties of ABC Rules
As we have established earlier, AV is the only ABC count-
ing rule that satisfies SD-strategyproofness and the only one
that satisfies IIA and monotonicity. However, AV is not the
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IIA mon. SD-str. simulations

Thiele Methods +
Dissatis. counting rules +
MW Appr. Voting (AV) + + + 0.0 0.0
Phragmén’s sequ. rule∗ + 0.659 0.848

Sequential PAV∗ + 0.683 0.796
Proportional A.V. (PAV) + 0.708 0.811

Reverse-Sequ. PAV∗ 0.711 0.814
Satisfaction A.V. (SAV) 0.861 0.955

Maximin A.V. (MAV) 0.861 1.0
Approval Monroe + 0.924 1.0

Sequential CC∗ + 0.944 1.0
Chamberlin–Cour. (CC) + 0.954 1.0

Reverse-Sequ. CC∗ 0.957 1.0

Table 1: Approval-based multiwinner voting rules and ax-
ioms they satisfy (+) or fail (blank). Classes of rules (such
as Thiele methods) satisfy an axiom if all rules in the class
satisfy it; they fail an axiom if one rule in the class fails it.
Some rules that are ABC choice rules by definition; these are
marked with a star (∗). The simulations columns show the
relative number of profiles where SD-manipulation was pos-
sible, based on 1000 instances with n = 24, m = 8, k = 4,
and approval sets of size of 2 (left column) and 3 (right).

only ABC rule that satisfies SD-strategyproofness. For exam-
ple, dictatorial rules trivially satisfy SD-strategyproofness, as
well as rules where candidates and voters are divided into pre-
defined districts and within each district a predefined number
of representatives is selected via approval voting. The natu-
ral question arises whether any of the well-established ABC
rules discussed in Section 2.1 (except for AV) satisfies SD-
strategyproofness. We provide a negative answer with Ta-
ble 1: AV holds indeed a special role among classic ABC
rules. Furthermore, we list which rules satisfy IIA and mono-
tonicity. Due to space constraints we have to omit the corre-
sponding proofs and counterexamples.

We complement this axiomatic analysis with an experi-
mental evaluation. In randomly generated instances we in-
vestigated the possibility of voters to SD-manipulate, i.e., we
computed the relative number of instances in which strategic
voting allows voters to change the set of winning committees
to one that stochastically dominates the original one. In Ta-
ble 1 the results of two experiments are displayed. In the first
experiment, it is assumed that voters approve of exactly two
candidates, in the second that voters approve of exactly three
candidates. For both experiments, approval sets were sam-
pled uniformly at random to generate profiles with n = 24
voters, m = 8 candidates, and assuming a committee size of
k = 4. Both experiments are based on 1,000 instances.

We first note that a large percentage of the instances al-
lowed for SD-manipulations. This is due to the strictness
of SD-strategyproofness: even minor variations in the set of
winning committees can yield a (minor) improvement for vot-
ers. Hence, SD-manipulations are often possible. Second,
and more importantly, we note that the likelihood of SD-
manipulations greatly varies for different ABC rule. We see
that PAV and its derivatives as well as Phragmén’s rule per-

p1 2 3 4 5 6 ∞
0

0.5

1

appr. sets of size 2

appr. sets of size 3

Figure 1: The relative number of profiles where SD-
manipulation is possible subject to p-geometric rules; via
simulation with n = 24, m = 6, k = 3, and approval sets
of a fixed size sampled from the uniform distribution.

form better than all other rules—except for AV. On the other
end, CC and its derivatives allow for SD-manipulations in
nearly all profiles. This gives rise to the hypothesis that vot-
ing rules similar to AV are more resistant to SD-manipulation,
rules similar to CC are more prone to SD-manipulation, and
proportional rules are in between. Exception to this hypothe-
sis can easily be identified: SAV is similar to AV but is SD-
manipulable in a large number of profiles, and also Approval
Monroe is very susceptible to SD-manipulation although it is
a proportional rule. In both cases, this seems to be a conse-
quence of their specific definitions allowing for specific SD-
manipulations to succeed.

We have therefore tested this hypothesis in a more con-
trolled setting, i.e., in the (more uniform) class of p-geometric
rules, p ≥ 1. These are Thiele methods defined by f(x, y) =∑x

i=1
1/pi. It is straightforward to see that the 1-geometric

rule is AV and, for p → ∞, p-geometric rules approach CC.
For this setting, we repeated our experiments (due to compu-
tational limitations with smaller profiles) and could clearly
see that the number of SD-manipulable profiles increased
with increasing p (cf. Figure 1). Two further observations
can be made: Although these experiments are based on a
large number of instances (1,000), there are some fluctua-
tions in the likelihoods. It appears that if p is integer, then
SD-manipulations are slightly more likely; this phenomenon
asks for a more detailed analysis. Second, for approval sets
of size 2 the likelihood values do not obviously approach the
corresponding CC value (shown as p =∞). This is due to the
fact that CC treats all voters equally that have one or more ap-
proved candidates in the committee, whereas for p-geometric
rules (even for large p) the score obtained from voters, e.g.,
with 2 and 3 approved candidates in the committee slightly
varies. Hence, there are fewer tied winning committees and
fewer SD-manipulations possible.

5 Conclusion
This work initiates the study of strategic voting for multiwin-
ner rules (i) without the need of imposing tie-breaking mech-
anisms, and (ii) without auxiliary information in the form of
utility functions. We have shown that Multiwinner Approval
Voting enjoys a strong form of strategyproofness, which
other popular rules do not satisfy. Furthermore, PAV, its
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sequential versions, and Phragmén’s rule—all being propor-
tional to some degree—show a reduced susceptibility to SD-
manipulation in our experiments. It would be interesting to
study the impact of coalitional SD-manipulations and the al-
gorithmic challenge of finding successful SD-manipulations.

Acknowledgements
Martin Lackner was supported by the European Research
Council (ERC) under grant number 639945 (ACCORD) and
by the Austrian Science Foundation FWF, grant P25518 and
Y698. Piotr Skowron was supported by a Humboldt Re-
search Fellowship for Postdoctoral Researchers and by the
Foundation for Polish Science within the Homing programme
(Project title: ”Normative Comparison of Multiwinner Elec-
tion Rules”).

References
[Arrow, 1950] K. J. Arrow. A difficulty in the concept of

social welfare. The Journal of Political Economy, pages
328–346, 1950.

[Barrot et al., 2017] N. Barrot, J. Lang, and M. Yokoo. Ma-
nipulation of Hamming-based approval voting for multiple
referenda and committee elections. In Proceedings of the
16th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS-2017), pages 597–605, 2017.

[Baumeister et al., 2015] D. Baumeister, S. Dennisen, and
L. Rey. Winner determination and manipulation in min-
isum and minimax committee elections. In Proceedings of
the 4th International Conference on Algorithmic Decision
Theory (ADT-2015), pages 469–485, 2015.

[Bogomolnaia and Moulin, 2001] A. Bogomolnaia and
H. Moulin. A new solution to the random assignment
problem. Journal of Economic Theory, 100(2):295–328,
2001.

[Brams and Kilgour, 2014] S. J. Brams and D. M. Kilgour.
Satisfaction approval voting. In Voting Power and Pro-
cedures, Studies in Choice and Welfare, pages 323–346.
Springer, 2014.

[Brams et al., 2007] S. J. Brams, D. M. Kilgour, and M. R.
Sanver. A minimax procedure for electing committees.
Public Choice, 132(3–4):401–420, 2007.

[Bredereck et al., 2017a] R. Bredereck, P. Faliszewski,
A. Kaczmarczyk, R. Niedermeier, P. Skowron, and
N. Talmon. Robustness among multiwinner voting rules.
In Proceedings of the 10th International Symposium on
Algorithmic Game Theory (SAGT-2017), pages 80–92,
2017.

[Bredereck et al., 2017b] R. Bredereck, A. Kaczmarczyk,
and R. Niedermeier. On coalitional manipulation for mul-
tiwinner elections: Shortlisting. In Proceedings of the 24th
International Joint Conference on Artificial Intelligence
(IJCAI-2017), pages 887–893, 2017.

[Brill et al., 2017] M. Brill, R. Freeman, S. Janson, and
M. Lackner. Phragmén’s voting methods and justified rep-
resentation. In Proceedings of the 31st Conference on Ar-
tificial Intelligence (AAAI-2017), pages 406–413, 2017.

[Faliszewski et al., 2017] P. Faliszewski, P. Skowron,
A. Slinko, and N. Talmon. Multiwinner voting: A new
challenge for social choice theory. In U. Endriss, editor,
Trends in Computational Social Choice. AI Access, 2017.
To appear.

[Janson, 2016] S. Janson. Phragmén’s and Thiele’s election
methods. Technical Report arXiv:1611.08826 [math.HO],
arXiv.org, 2016.

[Kilgour, 2010] D. M. Kilgour. Approval balloting for multi-
winner elections. In J.-F. Laslier and R. Sanver, editors,
Handbook on Approval Voting, pages 105–124. Springer,
2010.

[Lackner and Skowron, 2017] M. Lackner and P. Skowron.
Consistent approval-based multi-winner rules. Technical
Report arXiv:1704.02453v1 [cs.GT], arXiv.org, 2017.

[Laslier and Sanver, 2010] J.-F. Laslier and R. Sanver, edi-
tors. Handbook on Approval Voting. Springer, 2010.

[Laslier and Van der Straeten, 2016] J.-F. Laslier and
K. Van der Straeten. Strategic voting in multi-winners
elections with approval balloting: a theory for large
electorates. Social Choice and Welfare, 47(3):559–587,
2016.

[LeGrand et al., 2007] R. LeGrand, E. Markakis, and
A. Mehta. Some results on approximating the minimax
solution in approval voting. In Proceedings of the 3rd In-
ternational Conference on Autonomous Agents and Multi-
agent Systems (AAMAS-2007), pages 198:1–198:3, 2007.

[Meir et al., 2008] R. Meir, A. Procaccia, J. Rosenschein,
and A. Zohar. Complexity of strategic behavior in multi-
winner elections. Journal of Artificial Intelligence Re-
search, 33:149–178, 2008.

[Monroe, 1995] B. Monroe. Fully proportional representa-
tion. American Political Science Review, 89(4):925–940,
1995.

[Obraztsova et al., 2013] S. Obraztsova, Y. Zick, and
E. Elkind. On manipulation in multi-winner elections
based on scoring rules. In Proceedings of the 12th
International Conference on Autonomous Agents and
Multiagent Systems (AAMAS-2013), pages 359–366,
2013.

[Peters, 2018] D. Peters. Proportionality and strategyproof-
ness in multiwinner elections. In Proceedings of the 17th
International Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS-2018), 2018. To appear.

[Phragmén, 1894] E. Phragmén. Sur une méthode nouvelle
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