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Structured Preferences

Edith Elkind, Martin Lackner, and Dominik Peters

10.1 Introduction

In a typical social choice scenario, agents rank the available alternatives and have
to collectively decide on the best alternative, or a ranking of the alternatives. If
there are just two alternatives, the decision can be made by a majority vote.
However, for three or more alternatives the agents may face a difficult choice.
For instance, there can be a cycle in the majority preferences: it may happen
that a majority of voters prefer a to b, a majority of voters prefer b to c, yet a
majority of voters prefer c to a. Indeed, Arrow (1950) has shown that when there
are more than two alternatives, the only voting rule that satisfies a small set
of natural axioms is a dictatorship. Moreover, essentially any reasonable voting
rule is susceptible to strategic behavior: Gibbard (1973) and Satterthwaite (1975)
observed that under any ‘fair’ voting rule there exists a scenario where some voter
benefits from misrepresenting her preferences.

These classic results provide ample evidence that preference aggregation is
hard from a conceptual standpoint. On the other hand, preference aggregation
is also hard in a very different sense: it can be shown that for many important
voting rules computing the winner(s) is NP-hard. In particular, this is the case for
the Kemeny rule, which is arguably the most natural method for aggregating a set
of preference rankings into a single ranking, as well as for many popular mul-
tiwinner rules, such as Proportional Approval Voting, the Chamberlin–Courant
rule and the Monroe rule (see Chapter 2 for definitions).

Now, social choice theorists have observed that the first source of hardness
can be circumvented by focusing on scenarios where voters’ preferences share
some common structure. The most famous result of this type dates back to the
important early works of Black (1948) and Arrow (1951). They proved that if
voters’ preferences are essentially single-dimensional, then there are no cycles
in the majority preferences, and there is a voting rule that is strategyproof. The
specific domain of preferences considered by Black and Arrow is that of single-
peaked preferences; similar results have been subsequently obtained for other re-
stricted preference domains, such as those of preferences that are single-crossing
or single-peaked on a tree (to be formally defined later in this chapter).

It is then natural to ask whether the same approach can be used to circum-
vent computational complexity issues as well. The first foray in this direction
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was made by Walsh (2007), and since 2007 hardness and easiness results for
various restricted preference domains have been obtained for a number of prob-
lems including winner determination under a variety of voting rules, preference
elicitation, as well as several forms of strategic behavior in voting.

Interestingly, while purely social choice-theoretic issues (such as existence
of majority cycles) vanish as soon as we assume that voters’ preferences be-
long to a suitable restricted domain, many of the algorithms for voting-related
problems rely on the knowledge of the respective structural relationship among
voters/alternatives (such as the order of alternatives witnessing that the profile
is single-peaked). Thus, to make use of these algorithms, one also needs an effi-
cient procedure to determine whether a given preference profile has the required
structural property and to find a respective witness. Consequently, the problem
of designing such procedures has received a considerable amount of attention,
too, resulting in polynomial-time algorithms for recognizing preferences that be-
long to several prominent restricted domains.

In this chapter, we will survey work on four specific topics that concern al-
gorithmic properties of restricted preference domains. After defining the rele-
vant concepts in Section 10.2, in Section 10.3 we discuss two extensions of the
single-peaked domain, namely the domains of preferences that are single-peaked
on trees and on circles, and show that several positive results for single-peaked
preferences extend to these larger domains. In Section 10.4, we look at how the
definitions of single-peaked and single-crossing preferences can be adapted to
approval voting scenarios, and analyze the resulting preference domains from an
algorithmic point of view. In Section 10.5, we review work on the complexity of
strategic behavior in settings that are nearly structured. Finally, in Section 10.6,
we demonstrate how assuming that voters’ preferences belong to a restricted do-
main can make preference elicitation more efficient.

10.2 Background

Suppose that citizens of a country X are about to vote on the (flat) tax rate. The
set of alternatives is A = {0%, 1%, . . . , 100%}, and it admits a natural ordering
0% � 1% � · · · � 100%. Consider a voter i whose most-preferred alternative (the
peak) is 35%. Then it is plausible that i’s preferences decrease as we move away
from this peak: for example, we would expect 40% �i 50%, and 30% �i 20%. Such
preferences are called single-peaked with respect to the given ordering �.

a b c d e f g� � � � � �

Formally, let P = (�1, . . . ,�n) be a preference
profile consisting of linear orders over an alter-
native set A, and let N = {1, . . . , n}. Let top(i)
denote the most-preferred alternative of voter i.
Given a linear order � of A, we say that �i is
single-peaked with respect to � if for all a, b ∈ A
such that top(i) � a � b or b � a � top(i) we have
a �i b; we refer to � as an axis for A. In other
words, �i is decreasing as we move in either di-
rection from i’s peak. We say that the profile P is single-peaked if there exists



Structured Preferences 3

some axis � such that for each voter i ∈ N it holds that �i is single-peaked with
respect to �.

The concept of single-peaked preferences was first proposed by Black (1948)
and Arrow (1951), who noticed that for every single-peaked profile with an odd
number of voters the majority relation is transitive and hence there exists a Con-
dorcet winner. Further, there is a voting rule defined on single-peaked profiles
that is strategyproof (see Moulin (1991, p. 263) for details). This result is known
as the median voter theorem because of the form of this non-manipulable voting
rule: it orders the voters in order of their peaks (according to �) and then selects
the median voter’s peak, which is also the Condorcet winner.

�1 �2 �3 �4 �5

a b b d d

b a d b c

c d a c b

d c c a a

Another notion of structure in voters’ preferences is based
on ordering the voters rather than the candidates. A pro-
file P = (�1, . . . ,�n) of linear orders over A is called single-
crossing if voters can be ordered so that for all a, b ∈ A, the
set of voters who prefer a to b forms an interval of this or-
dering. Thus, if the very first voter prefers a to b, then there
is some value i, 1 ≤ i ≤ n, such that the first i voters prefer
a to b and the remaining n − i voters prefer b to a, i.e., the voters ‘switch’ from
a � b to b � a at most once. Just like a single-peaked profile, a single-crossing
profile is single-dimensional; in this case it is the voters who are ordered on an
‘ideological’ spectrum. Single-crossing profiles with an odd number of voters also
enjoy a transitive majority relation. In fact, they have a so-called representative
voter property: the majority relation is identical to the preference relation of the
median voter with respect to the single-crossing order (Rothstein, 1991).

The class of one-dimensional Euclidean preferences (Coombs, 1950) is defined
based on geometric considerations; all preference profiles in this class are both
single-peaked and single-crossing. Formally, a profile P = (�1, . . . ,�n) of linear
orders over A is called 1-Euclidean if there is a mapping x : N ∪ A→ R which as-
signs every voter i ∈ N a position x(i) on the real line, and assigns every alterna-
tive a ∈ A a position x(a) on the real line, so that for all i ∈ N and all pairs a, b ∈ A
we have a �i b if and only if |x(i) − x(a)| < |x(i) − x(b)|. Thus, in a 1-Euclidean
profile, voters prefer closer alternatives to those that are further away. It is easy
to see that every 1-Euclidean profile is single-peaked and single-crossing; the
respective orderings of candidates and voters are given by an embedding x wit-
nessing that P is 1-Euclidean. Yet, there are profiles that are both single-peaked
and single-crossing, but fail to be 1-Euclidean (Elkind et al., 2014). The geomet-
ric approach extends to higher dimensions: a profile is d-Euclidean if there exists
an embedding x : N ∪ A → Rd such that voters’ preferences are consistent with
Euclidean distances to alternatives under this embedding.

10.2.1 Algorithmic Results

There are polynomial-time algorithms for recognizing single-peaked (Bartholdi III
and Trick, 1986; Doignon and Falmagne, 1994; Escoffier et al., 2008), single-
crossing (Doignon and Falmagne, 1994; Elkind et al., 2012; Bredereck et al.,
2013) and 1-Euclidean (Doignon and Falmagne, 1994; Knoblauch, 2010; Elkind
and Faliszewski, 2014) profiles; in contrast, Peters (2017) has shown that rec-



4 E. Elkind et al.

ognizing d-Euclidean profiles is computationally hard. For single-peaked and
single-crossing profiles, the recognition problem can be reduced to the consec-
utive 1s problem, which asks whether the columns of a 0–1 matrix can be per-
muted so that in each row all 1s appear consecutively; this problem is polynomial-
time solvable (Booth and Lueker, 1976). (Section 10.4 provides an example of
such a reduction for dichotomous preferences.) Both of these domains also ad-
mit direct polynomial-time recognition algorithms; for single-peaked preferences
such an algorithm runs in time O(mn), which is linear in the input size.

There are many examples of NP-hard social choice problems that become easy
for single-peaked and single-crossing preferences. For instance, with an odd
number of voters, both of these preference restrictions guarantee that the ma-
jority relation is transitive and, in particular, there exists a Condorcet winner.
This implies that for profiles that satisfy these constraints the Kemeny rank ag-
gregation rule can be evaluated in polynomial time (since the transitive majority
relation gives an optimal ranking), and winners according to the Dodgson rule
and the Young rule can be found efficiently (since the Condorcet winner is the
unique winner for both rules). These results can be extended to profiles with an
even number of voters (Brandt et al., 2015).

Similar results hold for several NP-hard multiwinner voting rules (see Chapter
2). For example, Betzler et al. (2013) showed that, given a single-peaked profile
with n voters and m alternatives, we can find a winning committee according to
the Chamberlin–Courant rule (Chamberlin and Courant, 1983) in time O(m2n) by
a dynamic programming algorithm; this result can be extended to single-crossing
preferences (Skowron et al., 2015) and to a few other multiwinner rules (Elkind
and Ismaili, 2015; Peters, 2016). In essence, the algorithm of Betzler et al. (2013)
proceeds along the axis � from left to right, deciding whether to add candidates to
the committee being constructed; note that this means that the algorithm needs
to know such an axis, i.e., it relies on the existence of efficient recognition al-
gorithms discussed earlier in this section. Some of the computational problems
associated with various forms of strategic behavior (such as manipulation, con-
trol and bribery) also become polynomial-time solvable when voters’ preferences
can be assumed to be single-peaked or single-crossing; we survey such results
in more detail in Section 10.5.

10.3 Single-Peaked Preferences: Beyond the Line

The positive results for winner determination problems over restricted domains
discussed above have a potential drawback: in practice, very few profiles are
single-peaked. For example, under the impartial culture model, it is exponentially
unlikely that a profile is single-peaked (Lackner and Lackner, 2017), and no real-
world profile in PREFLIB (see Chapter 15) is single-peaked. One can try to address
this issue by extending the existing algorithms to profiles that are “nearly” single-
peaked or single-crossing, for an appropriate distance measure; we will survey
a sample of such results in Section 10.5. In the rest of this section, we will
pursue a different agenda: instead of considering preferences that are single-
peaked with respect to an axis, i.e., a path, we consider preferences that are
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single-peaked on more general graphs. We focus on two classes of graphs that
admit positive algorithmic and social choice-theoretic results, namely, trees and
cycles. This approach allows us to capture a broader class of preference profiles
and can be seen as a step towards mapping out the precise boundaries between
tractable and intractable instances of winner determination problems for several
important voting rules.

Preferences Single-Peaked on a Tree

Demange (1982) introduced the notion of preferences that are single-peaked on
a tree. Fix a set of alternatives A and consider a tree T = (A,E). A preference
order �i over A is single-peaked on T if a �i b whenever a lies on the (unique) path
between top(i) and b. Thus, a voter’s preferences decrease as we move away from
her peak along any path in T . A profile P = (�1, . . . ,�n) over a set of alternatives
A is said to be single-peaked on a tree if there is some tree T = (A,E) such that
for each voter i ∈ N the preference order �i is single-peaked on T . Note that this
definition is equivalent to the one in Section 10.2 when T is a path.

To make sense of this definition, it is useful to consider the case where T is
a star. Specifically, suppose that T is a star with center c, so E = {{c, a} : a ∈
A\{c}}. Which preference orders are single-peaked on T? Consider a voter i with
top(i) = c. No matter how she ranks the candidates in A \ {c}, her preferences
are necessarily single-peaked on T . On the other hand, if voter i’s peak is a leaf
vertex a 6= c, then c lies on the path from a to any other vertex b, and so we
must have c �i b for every b ∈ A \ {a, c}, i.e., c must be i’s second-most-preferred
alternative; the remaining alternatives may appear in �i in an arbitrary order.
Thus, a preference order is single-peaked on T if and only if c occurs in first or
second position in that order.

This analysis shows that moving from paths to arbitrary trees gives us many
more profiles: there are only Θ(2m−1) orders that are single-peaked on a given
path, but there are Θ((m − 1)!) orders that are single-peaked on a given star.
However, this expansion comes at a cost: Demange (1982) shows that profiles
single-peaked on a tree are not guaranteed to have a transitive majority relation.
On the positive side, such profiles still admit a Condorcet winner, and a strate-
gyproof voting rule. Moreover, Trick (1989) shows that it is possible to recognize
whether a given profile is single-peaked on a tree and to find a suitable tree in
O(m2n) time. A natural next question, then, is whether hard winner determina-
tion problems become easier for profiles that are single-peaked on trees.

For the Dodgson rule and the Young rule, the answer is clearly positive as
long as the number of voters is odd: we can simply output the Condorcet winner.
On the other hand, our characterization of profiles single-peaked on a star shows
that finding a consensus ranking according to the Kemeny rule remains hard.
Indeed, we can transform an arbitrary profile into one that is single-peaked on
a star by adding a dummy candidate and placing it in the first position in every
vote; the consensus ranking for the original profile can be easily extracted from
the one for the new ‘structured’ profile.

For multiwinner rules, the results are somewhat disappointing as well. In par-
ticular, for a profile single-peaked on a tree, while one can efficiently compute a
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winning committee under the egalitarian version of the Chamberlin–Courant rule,
for the more common utilitarian version, the winner determination problem re-
mains NP-hard (Yu et al., 2013). Interestingly, however, this hardness result does
not apply to profiles that are single-peaked on a star. This is because including
the center of the star in the committee ensures that each voter is quite well rep-
resented; filling the rest of the committee then boils down to choosing candidates
that appear most often in the top position. This argument can be generalized to
show that the problem of winner determination under the Chamberlin–Courant
rule for preferences that are single-peaked on trees is fixed-parameter tractable
with respect to the number of non-leaf vertices of the tree (Peters and Elkind,
2016). In a similar vein, Yu et al. (2013) show that dynamic programming can be
used for trees that are ‘path-like’, in the sense of having a few leaves; they place
the Chamberlin–Courant winner determination problem into the class XP with
respect to the number of leaves. Both the algorithm for trees with few leaves and
the algorithm for trees with few internal nodes rely on knowing a suitable tree;
Yu et al. (2013) and Peters and Elkind (2016) show that it is indeed possible to
efficiently decide whether a given profile is single-peaked on some such tree.

Preferences Single-Peaked on a Circle

Peters and Lackner (2017) initiate the algorithmic study of preferences that are
single-peaked on a circle. A preference profile is said to be single-peaked on a
circle if the alternatives can be arranged on a circle in such a way that for each
voter we can cut this circle so that her preferences are single-peaked on the
resulting path.

An intriguing property of this class of profiles is that it is closed under pref-
erence reversal: if an order is single-peaked on a circle, then so is the reverse
of this order. In particular, a profile that combines orders that are single-peaked
with respect to some axis and ones that are single-caved with respect to the same
axis is single-peaked on a circle. Thus, in a political context, this model allows
for voters with a preferred point along the ideological left-to-right spectrum as
well as for ‘extremists’ who dislike centrist alternatives. It can also capture other
application scenarios, including some that are more explicitly cyclic, such as
scheduling international meetings across time zones or placing a facility (e.g., an
airport) somewhere on the boundary of a city.

Profiles that are single-peaked on a circle do not inherit nice axiomatic proper-
ties of profiles that are single-peaked on a path; indeed, the (in)famous Condorcet
cycle (i.e., the three-voter profile over {x, y, z} given by x �1 y �1 z, y �2 z �2 x,
and z �3 x �3 y) is single-peaked on a circle, This means, in particular, that
profiles single-peaked on a circle do not necessarily have a Condorcet winner. In
fact, every majority relation can be realized by a profile that is single-peaked on
a circle, as we can implement the construction in the proof of McGarvey’s theo-
rem using a profile in this domain (Peters and Lackner, 2017). This implies that
the Kemeny rule remains hard to evaluate on such profiles. Furthermore, the
Gibbard–Satterthwaite Theorem can be proven using only profiles single-peaked
on a circle (Kim and Roush, 1980), which means that there is no analogue of the
median voter procedure for circles.
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However, from an algorithmic perspective, this domain restriction turns out to
be quite useful. For example, given a profile single-peaked on a circle, a greedy
algorithm can efficiently compute winners according to the Young rule (Peters
and Lackner, 2017). Also, for such profiles we can efficiently compute a winning
committee under the Chamberlin–Courant rule and its variants, by reducing this
problem to solving integer linear programs with totally unimodular constraint
matrices (Peters, 2016; Peters and Lackner, 2017).

Preferences Single-Peaked on Arbitrary Graphs?

In principle, for any graph G = (A,E), one can formally define what it means for
a preference order over A to be single-peaked on G: one can require that for each
b ∈ B the upper-contour set {a ∈ A : a � b} is connected in G. Note that under
this definition, every profile is single-peaked on the complete graph. However, as
we try to move beyond trees and circles, we cannot expect many positive results:
any class of graphs that contains circles would inherit the negative social choice-
theoretic results for circles, and any class of graphs that contains trees would
inherit the computational hardness results for trees. Moreover, the associated
recognition problem may be difficult as well: e.g., a result of Gottlob and Greco
(2013) implies that it is NP-hard to decide whether a profile is single-peaked on a
graph of treewidth at most 3.

There are other possibilities for definitions of single-peaked preferences on ar-
bitrary graphs, such as ones based on shortest paths (Nehring and Puppe, 2007).
It would be interesting to compare them in terms of algorithmic usefulness.

10.4 Structure in Dichotomous Preferences

Approval Voting is one of social choice theorists’ favorite voting rules (Brams and
Fishburn, 2007; Laslier and Sanver, 2010). It asks voters to report dichotomous
preferences, i.e., to split the alternatives into approved and disapproved choices—
a dichotomy. It then selects the alternative(s) with the maximum number of
approvals. This voting rule has many desirable axiomatic properties, but to a
large extent its attraction stems from its input format: it is easy for voters to
make up their mind about which preferences to report, it is easy to elicit such
preferences, and it is easy to reason mathematically about them. However, some
attractive voting rules for dichotomous preferences are still hard to evaluate, par-
ticularly in the multiwinner setting. It is therefore natural to ask what it means
for dichotomous preferences to be essentially one-dimensional, and whether the
respective preference restrictions are algorithmically useful.

Building on earlier work of List (2003), Dietrich and List (2010) and Fal-
iszewski et al. (2011), a recent paper by Elkind and Lackner (2015) considers
several ways of extending the definitions of single-peaked, single-crossing and 1-
Euclidean preferences to the dichotomous setting. The paper studies algorithmic
properties of the resulting domains, focusing on the complexity of recognizing
profiles that belong to these domains and computing the outputs of well-known
approval-based multiwinner rules.
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PSC

VEI CEI

DUE

CI=DE=PSP=PEVI

VEI: Voter Extremal Interval
CEI: Candidate Extremal Interval
DUE: Dichotomous Uniform Euclidean
VI: Voter Interval
CI: Candidate Interval
DI: Dichotomous Euclidean
PSP: Possibly Single-Peaked
PE: Possibly Euclidean
PSC: Possibly Single-Crossing

Figure 10.1: Relations between notions of structure for dichotomous preferences
as established by Elkind and Lackner (2015). Arrows indicate containment; more
restrictive domains are at the top.

Defining Domain Restrictions for Dichotomous Preferences

One approach that allows us to adapt any preference restriction defined for linear
orders to the realm of dichotomous orders is to view dichotomies as weak orders:
we can ask if it is possible to refine each weak order in a given dichotomous
profile so as to obtain a profile of linear orders with a given structural property
(Lackner, 2014; Elkind et al., 2015). Formally, we say that a linear order �
extends an approval ballot B if for every pair of candidates (a, b) such that a
is approved in B and b is not approved in B we have a � b. We then say that a
dichotomous profile belongs to the domain of possibly single-peaked (PSP) profiles
if it can be extended to a profile of linear orders that is single-peaked. Possibly
single-crossing (PSC) and possibly 1-Euclidean (PE) dichotomous profiles can be
defined in a similar manner.

For linear orders, it is known that the single-peaked and the single-crossing
domain overlap, but neither is contained in the other, and that the 1-Euclidean
domain is strictly contained in their intersection (see, e.g., Elkind et al., 2014).
Interestingly, the relationship among their approval-based cousins is different:
Elkind and Lackner (2015) show that PSP coincides with PE, whereas PSC is a
strict subdomain of PSP/PE (see Figure 10.1).

A more direct approach is based on the idea of contiguity: we could say that
a dichotomous profile is single-peaked if there exists an ordering of candidates
such that each voter’s approval set forms an interval of this ordering. This def-
inition is used by Faliszewski et al. (2011); we will say that such profiles belong
to the the candidate interval (CI) domain. Similarly, a profile belongs to the voter
interval (VI) domain if the voters can be ordered so that for every candidate c, the
set of voters approving c forms an interval of that ordering. Stronger variants
of both properties require every interval to contain the leftmost or the rightmost
element of the candidate/voter ordering; this yields the candidate/voter extremal
interval (CEI/VEI) domains.

For single-peaked preferences, the two approaches result in the same class of
profiles: Elkind and Lackner (2015) show that the CI domain coincides with the
PSP domain (and hence with the PE domain). In constrast, for single-crossing
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Figure 10.2: Detecting the candidate interval (CI) property by solving an instance
of consecutive 1s problem.

preferences, this is not the case: VI is strictly contained in PSC. Further, for the
interval-based approach, the relationship between CI and VI (direct analogues of
the single-peaked and the single-crossing domains) is similar to that for linear
orders: CI and VI do not contain each other and have a non-empty intersection,
which strictly contains a dichotomous analogue of 1-Euclidean preferences (to be
defined in the next paragraph).

The interval-based approach can also be applied to the 1-Euclidean domain.
We say that a profile belongs to the dichotomous Euclidean (DE) domain if voters
and candidates can be positioned on the real line so that for every voter i there
exists a radius ri such that all candidates within a distance ri of i are approved
by i. We can also require the radius r to be the same for all voters; the resulting
domain is called the dichotomous uniform Euclidean (DUE) domain. Remarkably,
DE turns out to coincide with CI: the order of candidates in a DE embedding
witnesses that the profile belongs to CI, and for the converse direction we can
place the candidates on the real line in a way that respects the CI ordering, and
then pick a suitable position for each voter. In contrast, the DUE domain is much
smaller; in particular, every DUE profile belongs to the VI domain (and similarly
to the case of linear orders, there are profiles that are CI and VI, but not DUE).

So far in this section, we focused on one-dimensional preference domains.
However, the approaches based on Euclidean distances can be easily generalized
to higher dimensions. Let us say that a profile belongs to the d-DE domain for
d ∈ N if voters and candidates can be placed in Rd so that for every voter i,
there exists a radius ri such that i approves exactly the candidates in the ri-ball
around i; the d-DUE domain is defined similarly, with the additional restriction
that ri = 1 for each voter i.

Recognition Algorithms

Elkind and Lackner (2015) show that almost all one-dimensional restricted do-
mains defined earlier in this section can be recognized in polynomial time; the
only exception is PSC, for which the complexity is open. All the polynomial-time
algorithms except for the one for DUE are based on reductions to the consecutive
1s problem, defined in Section 10.2.

To illustrate the proof technique, we will now show how to reduce the problem
of deciding if a given dichotomous profile belongs to the CI domain to an instance
of the consecutive 1s problem; our reduction is illustrated in Figure 10.2. Given



10 E. Elkind et al.

a dichotomous profile, we construct a binary matrix that contains a row for each
voter and a column for each candidate; the entry associated with voter v and
candidate c is set to 1 if v approves c and to 0 otherwise. By construction, a
permutation of the columns that results in 1s appearing consecutively in each
row corresponds to a permutation of candidates witnessing that the input profile
belongs to the CI domain. Similar reductions work for VI, CEI, and VEI. For DUE,
there is a reduction to recognizing bipartite permutation graphs.

Peters (2017) shows that detecting whether a given profile belongs to d-DE or
to d-DUE is NP-hard for d > 2; more precisely, he shows that these problems are
∃R-complete. In this respect, dichotomous orders behave like linear orders.

Algorithms for Approval-Based Multiwinner Rules

Let us now turn to applications of the preference restrictions considered in this
section. We consider two multiwinner voting rules that are defined for dichoto-
mous preferences (see Chapter 2 for a more general discussion of multiwinner
rules), namely Maximin Approval Voting (MAV) and Proportional Approval Vot-
ing (PAV). For both of these rules computing a winning committee is NP-hard
(LeGrand et al., 2007; Skowron et al., 2016; Aziz et al., 2015). Hence, it is natu-
ral to ask whether focusing on restricted domains, such as CI, VI, CEI, VEI, etc.
allows for faster algorithms.

We will first define the MAV rule. Let Ai denote the set of candidates approved
by voter i. Given a target committee size k, MAV returns a set of candidates W ,
|W | = k, that minimizes maxi∈N |W \ Ai| + |Ai \W |, i.e., the maximum Hamming
distance between a voter’s preferences and the committee (both viewed as 0/1
strings). Liu and Guo (2016) prove that a winning committee under MAV can be
computed in polynomial time for preference profiles that belong to CI or VI. This
is achieved by dynamic programming algorithms that exploit the structure of the
respective preferences. As a consequence, winner determination is also easy for
DUE, VEI, and CEI preferences (cf. Figure 10.1).

PAV is a less egalitarian, but more proportional rule than MAV. It returns a
set of candidates W , |W | = k, that maximizes

∑
i∈N h(|Ai ∩W |), where h(1) = 1,

h(2) = 1 + 1
2 , h(3) = 1 + 1

2 + 1
3 , etc. Elkind and Lackner (2015) showed that for

preference profiles that belong to CEI or VEI, a winning committee under PAV
can be computed in polynomial time via dynamic programming. Recently, Peters
(2016) extended this result to the CI domain, using a very different approach:
he shows that this problem reduces to solving an integer linear program with a
totally unimodular constraint matrix. Whether a polynomial-time algorithm is
also possible for the VI domain is an open problem.

10.5 Nearly Structured Preferences

While definitions in Sections 10.2 and 10.3 are mathematically appealing, we
cannot expect real-world preference data to satisfy them. Indeed, for all domains
we consider, the presence of a single voter with an unorthodox opinion, or a
few minor errors made during the preference elicitation process, may result in
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a profile that does not belong to the target domain. At the same time, we do
not encounter arbitrary combinations of preference orders in real-life preference
data, and in many cases we expect the voters’ preferences to be essentially one-
dimensional. One way to formalize this intuition is to define what it means for
a profile to be nearly single-peaked or nearly single-crossing, and then verify
whether these definitions are satisfied by the available preference data. A related
question is whether tractability results for structured domains can be extended
to nearly structured domains.

Defining Nearly Structured Preferences

This research agenda was put forward by Faliszewski et al. (2014), who focused
on single-peaked preferences. They proposed several measures of distance to
the single-peaked domain, including, in particular, the number of voters that
have to be deleted from a given profile so as to make it single-peaked. Alter-
natively, one can ask how many candidates need to to be removed to make a
profile single-peaked; this measure was suggested by Escoffier et al. (2008). An-
other approach shares motivation with the definitions of the Dodgson rule and
the Kemeny rule: we ask how many swaps of adjacent candidates are needed to
arrive to a single-peaked profile (Erdélyi et al., 2017). An egalitarian variant of
this measure, which asks what is the smallest number t such that a given profile
can be made single-peaked by performing at most t candidate swaps per vote,
was proposed by Faliszewski et al. (2014). We can also try to partition voters
(Escoffier et al., 2008) or candidates (Erdélyi et al., 2017) into a small number of
sets, so that each component forms a single-peaked profile. Yet another close-
ness measure is based on the idea of decloning. Recall that a set of candidates
forms a clone set if each voter ranks these candidates consecutively in her vote.
To make a given profile single-peaked, we can ‘collapse’ one or more clone sets by
replacing each such set with a single candidate; the ‘cost’ of this operation can
be measured as the overall reduction in the number of candidates (Elkind et al.,
2012) or the size of the largest clone set that we collapsed (Cornaz et al., 2012).
Of course, each of these approaches can also be used to measure how close a
given profile is to being single-crossing, 1-Euclidean, or single-peaked on a tree.

The suitability of each of these closeness measures depends on the kind of
errors we expect: for instance, the swap-based approach implicitly assumes that
the preferences are fundamentally single-peaked, but small errors have been
made during the elicitation process, whereas the decloning-based approach is
based on the intuition that the set of available options is one-dimensional, yet
some of the options are represented by several virtually indistinguishable alter-
natives. When several types of errors can be present, it may be useful to combine
several closeness measures, e.g., to allow, say, a few candidate deletions and a
small number of swaps.

Recognition of Nearly Structured Preferences

It is natural to ask if we can efficiently determine whether a given profile is nearly
structured. Technically, we are interested in computing the number of modifi-
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cations of a given type that are necessary to make a given profile single-peaked
or single-crossing. The complexity of this task has been considered by several
authors. Erdélyi et al. (2017) focus on computing the distance to the single-
peaked domain, for many of the distance measures listed above. Bredereck et al.
(2016) consider both the single-peaked domain and the single-crossing domain,
but limit themselves to two types of modifications, namely, voter deletion and
candidate deletion. The complexity of optimally decloning a given profile so as to
make it single-peaked or single-crossing was investigated by Cornaz et al. (2012)
and Elkind et al. (2012). Most of the results in these papers are negative: check-
ing if a given profile is close to being single-peaked or single-crossing is typically
NP-hard. However, there are several notable exceptions: it can be efficiently de-
cided how many candidates have to be deleted to make an election single-peaked
(Erdélyi et al., 2017) or how many voters need to be deleted to make an election
single-crossing (Bredereck et al., 2016); also, there are several positive results for
optimal decloning (Cornaz et al., 2012; Elkind et al., 2012). Moreover, Elkind and
Lackner (2014) provide efficient constant-factor approximation algorithms for all
computational problems considered by Bredereck et al. (2016).

Manipulation and Control with Nearly Structured Preferences

We have already seen a few examples of hard computational social choice prob-
lems that become polynomial-time solvable for single-peaked or single-crossing
preferences. One may then wonder if such results extend to preferences that are
nearly single-peaked or nearly single-crossing. Faliszewski et al. (2014) were the
first to ask this question for coalitional manipulation and control.

An instance of the constructive coalitional manipulation problem is given by
an election, a distinguished candidate p and a positive integer k; we ask if we
can add k new voters (manipulators) to the election to make p an election win-
ner. In the weighted variant of this problem (CCWM), each of the (old and new)
voters is associated with an integer voting weight (encoded in binary). For k > 1,
finding a successful manipulation is typically NP-hard (see, e.g., Conitzer and
Walsh, 2016). However, if the existing voters’ preferences are known to be single-
peaked with respect to a given axis, and the manipulators’ votes are required to
be single-peaked with respect to the same axis, CCWM becomes polynomial-time
solvable for several voting rules (Faliszewski et al., 2011). This is viewed as a
negative result, since NP-hardness results for manipulation are often interpreted
as ‘barriers’ to strategic behavior; thus, for single-peaked preferences these bar-
riers may disappear. However, as argued above, while real-life preferences may
be close to single-peaked, they are unlikely to be single-peaked; does this mean
that we can expect manipulation to be NP-hard in practical scenarios?

Faliszewski et al. (2014) show that easiness results for CCWM with single-
peaked preferences can be fragile. For instance, they identify a class of 3-candi-
date scoring rules for which CCWM has been shown to be NP-hard for gen-
eral profiles and polynomial-time solvable for single-peaked profiles (Faliszewski
et al., 2011), and show that it remains NP-hard for profiles that can be made
single-peaked by deleting a single voter. They obtain a similar result for profiles
that can be made single-peaked by swapping at most one pair of alternatives in
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each vote; the hardness proof is based on the observation that any preference
order over three candidates can be made single-peaked with respect to a given
axis by a single swap. Further results of this type have been obtained by Erdé-
lyi et al. (2015) for other measures of closeness to the single-peaked domain.
However, Erdélyi et al. (2015) also present an easiness result: for k-approval
with m candidates, CCWM is polynomial-time solvable for profiles that can be
made single-peaked by deleting ` voters as long as ` < 2k−m

m−k . CCWM for nearly
single-peaked profiles is also considered by Menon and Larson (2016), who are
interested in the complexity of this problem when voters are allowed to submit
partial orders of a certain form, namely top-truncated ballots.

Another type of strategic behavior considered by Faliszewski et al. (2014) is
(constructive) control: here, the goal is to make a certain candidate an election
winner by adding or deleting a given number of voters or candidates; the differ-
ence between control by adding voters and coalitional manipulation is that in
the former problem the voters to be added have to be selected from a given pool
of voters. Faliszewski et al. (2014) investigate the complexity of these forms of
control for several voting rules, including Plurality and t-approval; they identify
several scenarios where a control problem is hard for general preferences, but
can be solved in polynomial time for preferences that are single-peaked or can
be made single-peaked by removing a constant number of voters or performing
at most a constant number of candidate swaps in each vote. Yang and Guo
(2014a,b, 2015) continue this line of inquiry for some other measures of close-
ness to the single-peaked domain, and obtain several fixed parameter tractability
results with respect to the number of modifications needed to make a profile
single-peaked. See also the survey by Hemaspaandra et al. (2016).

10.6 Elicitation of Structured Preferences

While much of the work in (computational) social choice deals with aggregating
the collective preferences into a joint decision, sometimes the goal is simply to
elicit the voters’ preferences over the alternatives. It is typically assumed that we
know the number of voters n and the set of alternatives A, |A| = m, and have
access to an oracle that, given a triple (i, a, b) ∈ N × A × A, outputs 1 if the ith
voter prefers a to b and 0 otherwise. The goal is then either to fully determine the
preference order of each voter or to obtain enough information to determine the
winner(s) under a given voting rule. For unrestricted preferences, the complexity
of the former task can be easily seen to be Θ(nm logm): effectively, we have to
‘sort’ the m alternatives in the correct order for each of the n voters.

Perhaps unsurprisingly, this problem, too, becomes easier when voters’ pref-
erences belong to a restricted domain. In this section, we provide a brief summary
of three papers on this topic: an early paper by Conitzer (2009), who considers
single-peaked and 1-Euclidean preferences, and two very recent papers by Dey
and Misra (2016a,b), which deal with, respectively, single-crossing preferences
and preferences that are single-peaked on a tree.

We start by considering the single-peaked domain. Suppose first that the axis
is known; assume without loss of generality that it is given by a1 � a2 � · · · � am.
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Consider a voter i. We know that her least preferred alternative is either a1 or
am. Thus, by asking the oracle whether i prefers a1 to am, we can determine the
alternative ranked last in i’s preference order. We can then continue recursively,
building up i’s preference order from the bottom to the top. Clearly, m−1 queries
suffice to elicit the full preference order, so for n voters the number of queries re-
duces from O(nm logm) to O(nm). Conitzer (2009) describes an alternative O(m)
elicitation algorithm. His algorithm uses binary search to identify the voter’s top
alternative a∗. If a∗ = at for some t ∈ [m], we know that the voter orders the alter-
natives in {a1, . . . , at−1} and {at+1, . . . , am} as at−1 � . . . � a1 and at+1 � . . . � am,
respectively, so it remains to merge these two orders; this can be accomplished
in linear time.

To see that the number of queries for a single voter cannot be reduced to
o(m), suppose that m = 2t − 1 and consider the weak order at � {at−1, at+1} �
. . . � {a1, am}. Every linear order that refines this weak order is single-peaked
with respect to a1 � · · · � am. Thus, to identify a specific linear order from this
set, we would have to query the oracle about each of the m−1

2 = Ω(m) pairs
(at−1, at+1), . . . , (a1, am).

Now, suppose that the axis is not known. Then there is not much we can do
for a single voter: saying that her preferences are single-peaked with respect to
some axis provides no information whatsoever. However, Conitzer (2009) shows
that if the number of voters is large, the number of queries can be essentially as
low as in the case where the axis is known. His algorithm elicits the ranking of a
single voter (using the trivial O(m logm) algorithm) and then uses it as a guiding
order to elicit the preferences of the remaining voters; each additional ranking
can be elicited in O(m) queries given the first ranking. The overall number of
queries is then O(m logm + nm).

For the 1-Euclidean domain, knowing the positions of the alternatives on the
axis provides an impressive reduction in the number of queries: Conitzer (2009)
demonstrates that eliciting a single voter’s preferences only requires 2dlogme
queries. To see why this is the case, suppose that alternative aj appears in
position xj on the axis, with x1 < · · · < xm. Then voter i prefers aj to a`, j < `, if
and only if she is positioned to the left of xj+x`

2 . Thus, to determine a voter’s rank-
ing, it suffices to determine her position with respect to each of the

(
m
2

)
points of

the form xj+x`

2 , j, ` ∈ [m], j < `. These points divide the axis into
(
m
2

)
+ 1 intervals,

with voters in each interval having the same preference order. The appropriate
interval for each voter can be identified by asking

⌈
log
(
m
2

)
+ 1
⌉
≤ 2dlogme queries

using binary search. However, Conitzer (2009) shows that if the embedding of the
alternatives into the line is not known, then it is not possible to do better than in
the single-peaked case.

For single-crossing preferences, the relevant additional information is the
single-crossing order of the voters. Dey and Misra (2016a) observe that when
this order is known and we can query the voters in any order, all we need to do
is to elicit the preferences of the first voter and then find a ‘crossing point’ for
each pair of alternatives (i.e., if the first voter ranks a above b, we need to find the
first voter in the single-crossing order who ranks b above a). Indeed, before the
crossing point, all voters agree on that pair of alternatives with the first voter, and
from that point on they disagree with her on that pair. The first voter’s ranking
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can be elicited using O(m logm) queries, and the crossing point for each of the
(
m
2

)
pairs can be found using binary search over N . Altogether, we need O(m2 log n)
queries; while this bound is incomparable with the O(nm logm) bound for gen-
eral preferences, it provides a significant improvement for the setting where the
number of voters is much larger than the number of alternatives.

The analysis above assumes that one has full control over the order of queries.
However, it may be the case that the voters arrive one by one (in the single-
crossing order or in an arbitrary order) and one has to elicit a voter’s preferences
when she arrives (i.e., by the time we start querying voter i, we must have elicited
the full rankings of all voters who arrived before i). For the sequential model, Dey
and Misra (2016a) propose an algorithm that ‘expects’ the preference order being
elicited to be similar to the nearest ranking among the ones elicited so far. If
this is indeed the case, the current order can be elicited quickly, as the number
of disagreements with the neighboring order will be small. Each disagreement
contributes to the elicitation cost, but the total number of disagreements can
be bounded by above for any single-crossing profile. The resulting algorithm
asks O(nm + m2) queries if the voters arrive in the single-crossing order and
O(nm + m2 log n) queries if the arrival order can be arbitrary.

If the single-crossing order is not known, one can use the fact that the number
of distinct preference orders in a given single-crossing profile is bounded by

(
m
2

)
+1

(Bredereck et al., 2013). Thus, throughout the elicitation process, there may be
at most

(
m
2

)
+ 1 voters whose preference orders are different from all rankings

elicited so far (and are therefore costly to elicit), and in all other cases we can
quickly find a ‘match’ among the already elicited rankings. This approach leads
to an algorithm that makes O(nm+m3 logm) queries. Dey and Misra (2016a) also
provide lower bounds for each of their models; for most (though not all) models
these bounds are tight when n = Ω(m3 logm).

We now consider the case when voters’ preferences are single-peaked on a
tree. If there are no additional constraints on the structure of the tree, we cannot
expect to have an asymptotic improvement over the general case, even if the tree
and the assignment of the alternatives to the vertices of that tree are known.
Indeed, observe that all (m − 1)! rankings that place some alternative a ∈ A first
are single-peaked on a star with a in the center, so it may take log ((m− 1)!) =
O(m logm) queries to identify a specific ranking in this set. However, Dey and
Misra (2016b) show that one can obtain improved bounds when the tree is, in
some sense, close to a path. Specifically, for trees that can be covered with k
paths, they bound the number of queries by O(nm log k); in particular, this implies
an upper bound of O(nm log `) for trees with ` leaves. The algorithm proceeds by
eliciting each voter’s preferences along each path in the cover, and then merging
the results using the standard k-way merging algorithm. A similar argument
shows that if a tree can be turned into a path by removing d vertices, the query
complexity can be bounded by O(nm + nd log d). However, Dey and Misra (2016b)
show that we still need Ω(nm logm) queries if the tree has bounded degree (in fact,
the lower bound holds even if the degree of each vertex is at most 3). Moreover,
our analysis for the star shows that the same lower bound applies if the tree in
question has bounded pathwidth or bounded diameter.



16 E. Elkind et al.

10.7 Further Directions and Trends

At the end of this chapter we would like to highlight a few research directions that
we consider promising. First, most of this chapter has focused on domain restric-
tions that are in some sense one-dimensional: single-peaked, single-crossing and
1-Euclidean preferences are all defined by a linear order or a an embedding into
the real line. Multidimensional analogues of these notions have received much
less attention in the computational social choice literature. In particular, little
is known about computational benefits of such higher-dimensional restrictions.
For example, it is not known whether the Kemeny rule is computable in poly-
nomial time on two-dimensional single-peaked profiles (for definitions, see Sui
et al., 2013). Other natural higher-dimensional restricted domains arise from
1-Euclidean preferences—their definition can easily be extended to more dimen-
sions. More dimensions also make the choice of metric interesting: apart from
the Euclidean `2-metric, the `1- or `∞-metrics are sensible choices as well (Peters,
2017). Even if NP-hard voting problems remain hard for these domains, it might
be that better approximation algorithms can be found than for general prefer-
ences. Multidimensional domain restrictions offer many challenging research
questions, but faster algorithms for these classes are very desirable: these algo-
rithms would be applicable to a much larger class of preferences than algorithms
for one-dimensional restrictions.

We have presented a number of results for one-dimensional dichotomous
preference domains. More broadly, one can consider trichotomous or even k-
chotomous preferences (see, e.g., Ju, 2005; Zwicker, 2016). An example for tri-
chotomous preferences would be the distinction between satisfying, acceptable,
and unsatisfying candidates, thus allowing for the indication of compromise out-
comes. Notions of structure specifically for k-chotomous preferences have not yet
been studied, but some of the concepts discussed in this chapter can easily be
adapted to this setting.

Another direction is to consider completely new domain restrictions. Do-
mains suggested in the social choice literature usually guarantee the existence
of a Condorcet winner, but this is not a necessarily relevant property for algo-
rithmic purposes. Inspiration could be found by adapting structural concepts
from graph theory, such as restrictions resembling treewidth. For a systematic
study of domain restrictions, the framework of forbidden subprofiles (Ballester
and Haeringer, 2011; Bredereck et al., 2013) could prove to be valuable. Prefer-
ence profiles (sets of linear orders) are mathematically rich structures and there
is hope for a similarly diverse and powerful classification of structure as exists
for graph classes—along with algorithmic applications of these structural restric-
tions.

Finally, the work on structured preferences has mostly focused on voting-
related topics: winner determination, manipulation, control, etc. Given the ad-
vances that have been made in these fields, it could prove to be worthwhile to
investigate the impact of structured preferences in other fields of social choice;
fair division and judgment aggregation are natural candidates.
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