
A Fast Algorithm for Permutation Pattern Matching
Based on Alternating Runs

Marie-Louise Bruner1 and Martin Lackner2,�

1 Institute of Discrete Mathematics and Geometry, Vienna University of Technology, Austria
marie-louise.bruner@tuwien.ac.at

2 Institute of Information Systems, Vienna University of Technology, Austria
lackner@dbai.tuwien.ac.at

Abstract. The NP-complete PERMUTATION PATTERN MATCHING problem asks
whether a permutation P can be matched into a permutation T . A matching is an
order-preserving embedding of P into T . We present a fixed-parameter algorithm
solving this problem with an exponential worst-case runtime of O∗(1.79run(T)),
where run(T) denotes the number of alternating runs of T . This is the first al-
gorithm that improves upon the O∗(2n) runtime required by brute-force search
without imposing restrictions on P and T . Furthermore we prove that – under
standard complexity theoretic assumptions – such a fixed-parameter tractability
result is not possible for run(P).

1 Introduction

The concept of pattern avoidance (and, closely related, pattern matching) in permuta-
tions arose in the late 1960ies. It was in an exercise of his Fundamental algorithms [12]
that Knuth asked which permutations could be sorted using a single stack. The answer
is simple: These are exactly the permutations avoiding the pattern 231 and they are
counted by the Catalan numbers. By avoiding (resp. containing) a certain pattern the
following is meant: The permutation π = 53142 (written in one-line representation)
contains the pattern 231, since the subsequence 342 of π is order-isomorphic to 231. We
call the subsequence 342 a matching of 231 into π. On the other hand, π avoids the pat-
tern 123 since it contains no increasing subsequence of length three. Since 1985, when
the first systematic study of Restricted Permutations [17] was published by Simion and
Schmidt, the area of pattern avoidance in permutations has become a rapidly growing
field of discrete mathematics, more specifically of (enumerative) combinatorics [4,11].

This paper takes the viewpoint of computational complexity. Computational aspects
of pattern avoidance, in particular the analysis of the PERMUTATION PATTERN MATCH-
ING (PPM) problem, have received far less attention than enumerative questions until
now. The PPM problem is defined as follows:

PERMUTATION PATTERN MATCHING (PPM)
Instance: A permutation T (the text) of length n and a permutation

P (the pattern) of length k ≤ n.
Question: Is there a matching of P into T ?

� The second author was supported by the Austrian Science Fund (FWF): P20704-N18.

F.V. Fomin and P. Kaski (Eds.): SWAT 2012, LNCS 7357, pp. 261–270, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

262 M.-L. Bruner and M. Lackner

In [5] it was shown that PPM is in general NP-complete. From this result follows a
trivial brute-force algorithm checking every length k subsequence of T . Its runtime is
in O∗(2n), i.e. is bounded by 2n · poly(n). To the best of our knowledge, no algorithm
with a runtime of O∗((2 − ε)n) without restrictions on P and T is known yet. If such
restrictions are imposed, improvements have been achieved. There are polynomial time
algorithms in case of a separable pattern [2, 5, 10]. Separable permutations avoid both
3142 and 2413. In case P is the identity 12 . . . k, PPM consists of looking for an in-
creasing subsequence of length k in the text – this is a special case of the LONGEST

INCREASING SUBSEQUENCE problem. This problem can be solved in O(n logn)-time
for sequences in general [16] and in O(n log logn)-time for permutations [7,14]. PPM
can be solved in O(n logn)-time for all patterns of length four [2]. An O(k2n6)-time
algorithm is presented in [9] for the case that both the text and the pattern are 321-
avoiding.

In this paper we tackle the problem of solving PPM faster than O∗(2n) for arbi-
trary P and T . We achieve this by exploiting the decomposition of permutations into
alternating runs. As an example, the permutation π = 53142 has three alternating runs:
531 (down), 4 (up) and 2 (down). We denote this number of ups and downs in a per-
mutation π by run(π). Alternating runs are a fundamental permutation statistic and had
been studied already in the late 19th century by André [3]. An important result was the
characterization of the distribution of run(π) in a random permutation: asymptotically,
run(π) is normal with mean 1

3 (2|π|−1) [13]. Despite the importance of alternating runs
within the study of permutations, the connection to PPM has so far not been explored.

In detail the contributions of this paper are the following:

– We present a fixed-parameter algorithm for PPM with an exponential runtime of
O∗(1.79run(T)). Since the combinatorial explosion is confined to run(T), this al-
gorithm performs especially well when T has few alternating runs. Indeed, the
runtime depends only polynomially on n, the length of T .

– Since run(T) ≤ n, this algorithm also solves PPM in time O∗(1.79n). This is a
major improvement over the brute-force algorithm.

– Furthermore, we analyze this algorithm with respect to run(P). We obtain a run-

time of O∗((n2/2run(P)
)run(P))

. In the framework of parameterized complexity
theory this runtime proves XP membership for run(P).1

– Finally, we prove that this XP result cannot be substantially improved. We prove
that – under standard complexity theoretic assumptions – no fixed-parameter algo-
rithm exists with respect to run(P), i.e. no algorithm with runtime O∗(crun(P)) for
some constant c may be hoped for.

Proofs had to be omitted in this version – we refer the reader to the full version of this
paper [6]. Runtime calculations can be found there as well.

2 Preliminaries

Permutations. For any m ∈ N, let [m] denote the set {1, . . . ,m} and [0,m] denote
{0, 1, . . . ,m}. A permutation π on the set [m] can be seen as the sequence π(1), π(2),

1 XP membership also follows from results in [1] and a lemma shown in [6].

A Fast Algorithm for Permutation Pattern Matching 263

. . . , π(m). Viewing permutations as sequences allows us to speak of subsequences of
a permutation. We speak of a contiguous subsequence of π if the sequence consists of
contiguous elements in π.

Definition 1. Let P (the pattern) be a permutation of length k. We say that the permu-
tation T (the text) of length n contains P as a pattern or that P can be matched into T if
we can find a subsequence of T that is order-isomorphic to P . If there is no such subse-
quence we say that T avoids the pattern P . Matching P into T thus consists in finding
a monotonically increasing map ϕ : [k] → [n] so that the sequence ϕ(P), defined as(
ϕ(P (i))

)
i∈[k]

, is a subsequence of T .

Every permutation π on [m] defines a total order ≺π on [m]. We write i ≺π j iff
π−1(i) < π−1(j), i.e. the value i stands to the left of the value j in π. When considering
the minimum (maximum) of a subset S ⊆ [m] with respect to ≺π, we write minπ S
(maxπ S).

We discern two types of local extrema in permutations: valleys and peaks. A valley
of a permutation π is an element π(i) for which it holds that π(i − 1) > π(i) and
π(i) < π(i+1). If π(i− 1) or π(i+1) is not defined, we still speak of valleys. The set
Val(π) contains all valleys of π. Similarly, a peak denotes an element π(i) for which it
holds that π(i− 1) < π(i) and π(i) > π(i + 1).

Valleys and peaks partition a permutation into contiguous monotone subsequences,
so-called (alternating) runs. The first run of a given permutation starts with its first
element (which is also the first local extremum) and ends with the second local ex-
tremum. The second run starts with the following element and ends with the third local
extremum. Continuing in this way, every element of the permutation belongs to exactly
one alternating run. Observe that every alternating run is either increasing or decreasing.
We therefore distinguish between runs up and runs down. Note that runs up always end
with peaks and runs down always end with valleys. The parameter run(π) counts the
number of alternating runs in π. Hence run(π) + 1 equals the number of local extrema
in π. These definitions can be analogously extended to subsequences of permutations.

Example 2. In the permutation 1 8 12 4 7 11 6 3 2 9 5 10 the valleys are 1, 4, 2 and 5
and the peaks are 12, 11, 9 and 10. A decomposition into alternating runs is given
by: 1 8 12|4|7 11|6 3 2|9|5|10. A graphical representation can be found in Figure 1 on
page 265. �

Parameterized Complexity Theory. In contrast to classical complexity theory, a pa-
rameterized complexity analysis studies the runtime of an algorithm with respect to an
additional parameter and not just the input size |I|. A problem parameterized by a pa-
rameter p is fixed-parameter tractable (or in FPT) if there is an algorithm solving it
in time O(f(p) · |I|c), where f is a computable function and c a constant. The algo-
rithm itself is also called fixed-parameter tractable (fpt). In this paper we want to focus
on the exponential runtime of algorithms, i.e. the function f , and therefore use the O∗

notation which neglects polynomial factors. The classes W[1] ⊆ W[2] ⊆ . . . build
the so-called W-hierarchy. It is conjectured (and widely believed) that W[1] �= FPT.
Therefore showing W[1]-hardness can be considered as evidence that a problem is
not fixed-parameter tractable. A problem is in XP with respect to a parameter k if

264 M.-L. Bruner and M. Lackner

it can be solved in time O(|I|f(k)) where f is a computable function. It holds that
FPT ⊆ W[1] ⊆ W[2] ⊆ . . . ⊆ XP. For details we refer the reader to [8, 15].

3 The Alternating Run Algorithm

We start with an outline of the alternating run algorithm. Its description consists of two
parts. In Part 1 we introduce so-called matching functions. These functions map runs
in P to sequences of adjacent runs in T . The intention behind matching functions is
to restrict the search space to certain length k subsequences, namely to those where
all elements in a run in P are mapped to elements in the corresponding sequences of
runs in T . In Part 2 a dynamic programming algorithm is described. It checks for every
matching function whether it is possible to find a compatible matching. This is done by
finding a small set of representative elements to which the element 1 can be mapped to,
then – for a given choice for 1 – finding representative values for 2, and so on.

Theorem 3. The alternating run algorithm solves PPM in time O∗(1.79run(T)). There-
fore PPM parameterized by run(T) is in FPT.

Corollary 4. The alternating run algorithm solves PPM in time O∗(1.79n) where n is
the length of the text T .

Proposition 5. PPM is in XP with respect to the parameter run(P) since the alternat-

ing run algorithm solves PPM in time O∗((n2

2run(P)

)run(P))
.

Throughout this section the input instance (Tex , Pex) which is given by
Tex = 18 12 4 7 11 6 3 2 9 5 10 and Pex = 23 1 4 serves as a running example.

Part 1: Matching Functions. We introduce the concept of matching functions. These
are functions from [run(P)], i.e. runs in P , to sequences of adjacent runs in T . For a
given matching function F the search space in T is restricted to matchings where an
element i contained in the j-th run in P is matched to an element in F (j). Two adjacent
runs in P are mapped to sequences of runs that overlap with exactly one run. This
overlap is necessary since elements in different runs in P may be matched to elements
in the same run in T . More precisely, valleys and peaks in P might be matched to the
same run in T as their successors (see the following example).

Example 6. In Figure 1 Pex (left-hand side) and Tex (right-hand side) are depicted
together with a matching function F . A matching compatible with F is given by 4 6 2 9.
We can see that the elements 6 and 2 lie in the same run in Tex even though 3 (a peak)
and 1 (its successor) lie in different runs in Pex . �
Definition 7. A matching function F maps an element of [run(P)] to a subsequence of
T . It has to satisfy the following properties for all i ∈ [run(P)].

(P1) F (i) is a contiguous subsequence of T .
(P2) If the i-th run in P is a run up (down), F (i) starts with an element following a

valley (peak) or the first element in T and ends with a valley (peak) or the last
element in T .

A Fast Algorithm for Permutation Pattern Matching 265

2

3

1

4

1

8

12

4

7

11

6

3
2

9

5

10

= F (1)

= F (2)

= F (3)

Fig. 1. Pex and Tex together with a matching function F and the compatible matching 4 6 2 9

run up in P

run down in P

Fig. 2. A sketch of a matching function and its M- and W-shaped subsequences

(P3) F (1) starts with the first and F (run(P)) ends with the last element in T .
(P4) F (i) and F (i + 1) have one run in common: F (i + 1) starts with the leftmost

element in the last run in F (i).

Property (P2) implies that every run up is matched into an M-shaped sequence of runs
of the form up-down-up-...-up-down (if the run up is the first or the last run in P the
sequence might start or end differently) and every run down is matched into a W-shaped
sequence of runs of the form down-up-down-...-down-up (again, if the run down is the
first or the last run in P , the sequence might start or end differently). These M- and
W-shaped sequences and their overlap are sketched in Figure 2.

The following lemma is essential as it enables us to iterate over all matching func-
tions in fpt time.

Lemma 8. There are at most
√
2
run(T)

functions from [run(P)] to subsequences of T
that satisfy (P1) to (P4).

Proof idea. A matching function F can be uniquely determined by fixing the first run
up in each F (i). There are at most
run(T)/2� runs up in T . �

Part 2: Finding a Matching. When checking whether T contains P as a pattern, it is
sufficient to test for all matching functions whether there exists a compatible matching.
A matching is compatible with a matching function F if an element i contained in
the j-th run in P is matched to an element in F (j). This is checked by a dynamic
programming algorithm. The algorithm computes the data structure Xκ for each κ ∈

266 M.-L. Bruner and M. Lackner

[k]. Xκ is a subset of [0, n]run(P) and contains representative choices for the matching
of the largest element in each run in P that is ≤ κ. (Xκ does of course depend on F but
we omit this in the notation.)

Let us explain what is meant by representative choices. We search for a compatible
matching of P into T by successively determining possible elements for 1, 2, . . . , k.
Given a choice for κ ∈ [k], possible choices for κ + 1 are necessarily larger. In ad-
dition, it is always preferable to choose elements that are as small as possible. To be
more precise: if ν ∈ [n] has been chosen for κ ∈ [k], we merely need to consider the
valleys of the subsequence of T containing all elements larger than ν. Indeed, if any
matching of P into T can be found, it is also possible to find a matching that only in-
volves valleys in the above-mentioned subsequences. Therefore our algorithm will only
consider such valleys – we call these elements representative. As an example, consider
again Figure 1. Here 4 6 3 10 is a matching of Pex into Tex where the elements 3 and
10 are not representative. This can be seen since 3 is not a valley and 10 is not a valley
in the subsequence consisting of elements larger than 6. However, this matching can
be represented by the matching 4 6 2 9 that only involves representative elements (3 is
represented by 2; 10 by 9).

Furthermore, observe that when successively determining possible elements for
1, 2, . . . , k, we move from left to right in runs up and from right to left in runs down.
Hence the chosen elements do not only have to be larger than the previously chosen
element but also have to lie on the correct side of the previously chosen element in the
same run. These observations are captured in the following definition.

Definition 9. For a permutation π on [n] and integers i, j ≤ n, we define πU(i,j)

(πD(i,j)) as the subsequence of π consisting of all elements that are right (left) of
j and larger than i. Then URep(π, i, j) := Val(πU(i,j)) (resp. DRep(π, i, j) :=
Val(πD(i,j))) corresponds to the set of representative elements for the case of a run
up (resp. down).

For an example, see Figure 3 where representative elements are shown for the permu-
tation Tex , i = 3 and j = 2.

1

12

7

11

3
2

9
10

v

v

v

v

8

4

6
5

D

D

D
U

x Val(T)
v

xD DRep(T, 3, 2)

x U URep(T, 3, 2)

Fig. 3. Illustrating Definition 9

A Fast Algorithm for Permutation Pattern Matching 267

We now describe how the algorithm checks whether there is a matching from P into
T compatible with the matching function F . The data structure Xκ consists of run(P)-
tuples with entries in [0, n]. The i-th component of a tuple in Xκ is a representative
choice for the largest element ≤ κ that lies in the i-th run. Limiting Xκ to representative
elements allows to bound its size by 1.262run(T). In order to achieve this upper bound,
we impose the following conditions (C1) and (C2) and remove unnecessary elements
by applying the rules (R1) and (R2). In order to state these conditions and rules, we
write r(κ) = i iff κ is contained in the i-th run in P . For notational convenience we
define r(0) := 1.

First, we set X0 :=
{
(0, 0, . . . , 0)

}
. The set Xκ is then constructed from Xκ−1 as

follows. Let x =
(
x1, . . . , xrun(P)

) ∈ Xκ−1. We now define Nκ,x to be the set of all
ν ∈ [n] that satisfy (C1) and (C2). This set contains representative elements to which κ
may be mapped to for the given x.

(C1) It has to hold that ν ∈ URep(F (r(κ)), xr(κ−1), xr(κ)) in case κ lies in a run up
and analogously ν ∈ DRep(F (r(κ)), xr(κ−1), xr(κ)) in case κ lies in a run down.

This condition ensures that ν is larger than the previously chosen element for κ − 1,
i.e. larger than xr(κ−1). Furthermore, it enforces ν to lie on the correct side of xr(κ),
the previously chosen element in this run. Instead of considering all such elements in
F (r(κ)) we only take into account representative elements.

(C2) If κ is not the largest element in its run in P , there has to exist ξ ∈ F (r(κ)) with
ν < ξ and ν ≺T ξ for κ appearing in a run up (ξ ≺T ν for κ appearing in a run
down).

This condition excludes a choice for κ that cannot lead to a matching. A non-maximal
element in a run up (down) in P has to be mapped to an element having larger ele-
ments to its right (left). We therefore exclude elements in the rightmost (leftmost) run
of F (r(κ)) if this is a run down (up). Condition (C2) is necessary to obtain the runtime
bounds for the dynamic programming algorithm.

As an intermediate step let X ′
κ := {x(ν) | x ∈ Xκ−1 and ν ∈ Nκ,x}, where

x(ν) :=
(
x1, . . . , xr(κ)−1, ν, xr(κ)+1, . . . , xrun(P)

)
. The tuple x(ν) thus differs from x

only at the r(κ)-th position. Note that two different elements x and x′ in Xκ−1 may
lead to the same element x(ν) = x′(ν) in Xκ if they only differ in xr(κ). Rule (R1)
describes how to compute Xκ from X ′

κ. Stating it requires the following definition.

Definition 10. Let π be a permutation of length n. A subsequence of π consisting of a
consecutive run down and run up (formed like a V) is called a vale. If π starts with a
run up, this run is also considered as a vale and analogously if π ends with a run down.
For two elements ν1, ν2 ∈ [n], ν1 ∼ ν2 if both lie in the same vale2. For two k-tuples
x,y ∈ [n]k, x ∼ y if for every i ∈ [k] it holds that xi ∼ yi. For a fixed set of k-tuples
S and x ∈ S, the equivalence class [x]∼ is defined as all y ∈ S with x ∼ y.

(R1) We set Xκ :=
{

min(r(κ))([x]∼) | x ∈ X ′
κ

}
, where min(i)(S) is the function

picking the tuple in S with the smallest value at the i-th position. If this mini-
mum is not unique, it arbitrarily picks one candidate.

2 Note that every element in a permutation is contained in exactly one vale.

268 M.-L. Bruner and M. Lackner

This rule is the key to prove the 1.262run(T) upper bound on |Xκ|. It is based on the
observation that it is enough to keep a single tuple for each [x]∼. This means that for a
set of tuples with coinciding vales it is enough to consider one of them. We provide an
intuition about the rule and its correctness in the following example.

Example 11. Consider the text permutation schematically represented in Figure 4. We
are searching for representative choices for κ, an element lying in a run down. For κ′,
the previous element lying in the same run as κ, two representative elements are μ1

(circle) and μ2 (square). They lead to one representative element for κ − 1 each: if μ1

has been chosen ν1 is a representative element (circle) and if μ2 has been chosen ν2 is
one. Following condition (C1), we find three representative elements for κ in F (r(κ)):
ξ1 (if ν1 has been chosen), ξ2 and ξ3 (if ν2 has been chosen).

We can now observe that it is not necessary to store all three representative elements
for κ. Indeed, in the vale containing ξ1 and ξ2 we only need to keep track of ξ1 since
this is always a better choice than ξ2. This can be seen in the following way: In general,
elements that lie further to the right (left) in a run down (up) might be preferable since
they leave more possibilities for future elements that are to be matched. Within a vale
however, the horizontal position does not make any difference, it is only the vertical
position that matters. Here, the elements left of ξ2 and right of ξ1 are not available for
following choices even if we choose ξ2 since they are smaller than ξ2. However, the
elements left of ξ1 that are smaller than ξ2 are only available if we choose ξ1. �

= F (r(κ)) = F (r(κ′)),
where κ and κ′ lie in a run down

.

= F (r(κ− 1)),
where κ− 1 lies in a run up

μ1

μ2

ν1

ν2

ξ3
ξ2

ξ1

representative elements for

κ′ :

κ− 1 :

κ :

κ′ < κ− 1 < κ

Fig. 4. Illustrating Rule (R1)

In the case that κ is the largest element in its run, it is enough to consider a single
representative element in F (r(κ)). This is because the position of the element ν is
no longer relevant since no further elements have to be chosen in this run. Hence the
following data reduction is performed on Xκ.

(R2) Let Mκ,x :=
{
yr(κ) | y ∈ Xκ ∧ (yi = xi ∀i �= r(κ))

}
. If κ is the largest ele-

ment in its run, each x =
(
x1, . . . , xrun(P)

) ∈ Xκ is replaced by the tuple(
x1, . . . , xr(κ)−1,min(Mκ,x), xr(κ)+1, . . . , xrun(P)

)
.

A Fast Algorithm for Permutation Pattern Matching 269

As a consequence there are no two tuples in Xκ that only differ at the r(κ)-th position
in this case.

Termination. For a given matching function F , the algorithm described in Part 2 ter-
minates as soon as we have reached Xk. Observe that Xk is always empty if a previous
Xκ was empty. If for any F the data structure Xk is non-empty, P can be matched into
T .

Example 12. Let us demonstrate with the help of a simple example how the alternating
run algorithm works. Consider the text Tex and the pattern Pex . In this example we
consider the matching function F represented in Figure 1. Figure 5 depicts a successful
run of the algorithm finding the matching 4 6 2 9. �

(0,2,0)

(8,2,0) (4,2,0)

(6,2,0)

(6,2,9)

The only valley in F (r(1)) = F (2) is 2, therefore N1,(0,0,0) = {2}.

There are 3 representative elements larger than 2 in F (1): 8, 4 and 3.
Since 2 is not the largest element in its run in Pex , condition (C2) implies
that 3 is ruled out. Thus N2,(0,2,0) = {8, 4}. Rule (R1) yields X2 = X ′

2.
Rule (R2) is not applicable.

We have N3,(8,2,0) = {11} and N3,(4,2,0) = {7, 6} implying X ′
3 =

{(11, 2, 0), (7, 2, 0), (6, 2, 0)}. Rule (R1) discards (11, 2, 0) in favor of
(7, 2, 0). Finally, Rule (R2) is applicable here and discards (7, 2, 0).

The only representative element larger than 6 in F (3) is 9. The matching
of Pex = 2314 into Tex found by the algorithm is thus 4629.

Fig. 5. The construction of X1, . . . , X4 for our running example (Tex , Pex)

4 W[1]-Hardness for the Parameter run(P)

Proposition 5 shows that the alternating run algorithm also yields an XP result with
respect to run(P). The following theorem implies that this result cannot be improved
to an FPT result – unless FPT = W[1]. This is shown by an fpt-reduction from the
W[1]-complete CLIQUE problem.

Theorem 13. PPM is W[1]-hard with respect to the parameter run(P).

5 Future Work

Theorem 3 shows fixed-parameter tractability of PPM with respect to run(T). An im-
mediate consequence is that any PPM instance can be reduced by polynomial time pre-
processing to an equivalent instance – a kernel – of size depending solely on run(T).
This raises the question whether even a polynomial-sized kernel exists. Another re-
search direction is the study of further permutation statistics. The major open problem
in this regard is whether PPM is fpt with respect to the length of P . Finally, our method
of making use of alternating runs might lead to fast algorithms for other permutation
based problems as well.

270 M.-L. Bruner and M. Lackner

References

1. Ahal, S., Rabinovich, Y.: On complexity of the subpattern problem. SIAM J. Discrete
Math. 22(2), 629–649 (2008)

2. Albert, M., Aldred, R., Atkinson, M., Holton, D.: Algorithms for Pattern Involvement in
Permutations. In: Eades, P., Takaoka, T. (eds.) ISAAC 2001. LNCS, vol. 2223, pp. 355–367.
Springer, Heidelberg (2001)

3. André, D.: Étude sur les maxima, minima et séquences des permutations. Ann. Sci. École
Norm. Sup. 3(1), 121–135 (1884)

4. Bona, M.: Combinatorics of permutations. Discrete Mathematics and Its Applications. Chap-
man & Hall/CRC (2004)

5. Bose, P., Buss, J.F., Lubiw, A.: Pattern matching for permutations. Information Processing
Letters 65(5), 277–283 (1998)

6. Bruner, M.L., Lackner, M.: A fast algorithm for permutation pattern matching based on al-
ternating runs. CoRR (2012)

7. Chang, M.S., Wang, F.H.: Efficient algorithms for the maximum weight clique and maxi-
mum weight independent set problems on permutation graphs. Information Processing Let-
ters 43(6), 293–295 (1992)

8. Flum, J., Grohe, M.: Parameterized complexity theory. Springer, Heidelberg (2006)
9. Guillemot, S., Vialette, S.: Pattern Matching for 321-Avoiding Permutations. In: Dong, Y.,

Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 1064–1073. Springer, Hei-
delberg (2009)

10. Ibarra, L.: Finding pattern matchings for permutations. Information Processing Letters 61(6),
293–295 (1997)

11. Kitaev, S.: Patterns in Permutations and Words. Springer, Heidelberg (2011)
12. Knuth, D.E.: The Art of Computer Programming. Fundamental Algorithms, vol. I. Addison-

Wesley (1968)
13. Levene, H., Wolfowitz, J.: The covariance matrix of runs up and down. The Annals of Math-

ematical Statistics 15(1), 58–69 (1944)
14. Mäkinen, E.: On the longest upsequence problem for permutations. International Journal of

Computer Mathematics 77(1), 45–53 (2001)
15. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Math-

ematics And Its Applications. Oxford University Press (2006)
16. Schensted, C.: Longest increasing and decreasing subsequences. Classic Papers in Combina-

torics, pp. 299–311 (1987)
17. Simion, R., Schmidt, F.W.: Restricted permutations. European Journal of Combinatorics 6,

383–406 (1985)

	A Fast Algorithm for Permutation Pattern Matching Based on Alternating Runs
	Introduction
	Preliminaries
	The Alternating Run Algorithm
	W[1]-Hardness for the Parameter run(P)
	Future Work
	References

