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Abstract. Recently, in the social choice literature, much atten-
tion has been given to the question of avoiding underrepresentation
in approval-based committee voting. In this paper, we explore the
largely overlooked complementary question of avoiding overrepre-
sentation. This has not been explored systematically, despite being
a desirable property with concrete applications. Intuitively, overrep-
resentation happens when a group controls many more candidates
in the committee than their size would warrant. We formulate a
strong and appealing axiom for this, called justifiable upper quota.
We prove that among the class of composite Thiele rules (a generali-
sation of the well-studied class of Thiele rules), there is a unique rule
that satisfies this axiom. This rule is the natural analogue to a method
proposed by John Quincy Adams in the context of parliamentary ap-
portionment.

1 Introduction
Consider a scenario where a group of agents must jointly select a
certain number of items from a pool of alternatives. Many real-world
situations can be described in this way; for example, committee elec-
tions [10], parliamentary apportionment [2], or finding group recom-
mendations [16].

This problem, known as multi-winner voting [8, 10], has re-
cently been one of the most-studied issues in (computational) so-
cial choice [4]. Most of the effort was focused on approval-based
committee voting, where voters express their preferences by approv-
ing or disapproving each candidate (see the survey by Lackner and
Skowron [10]). In particular, one of the main issues in this area is how
to guarantee representation or, equivalently, how to avoid underrep-
resentation. Briefly, the idea is that sizeable minorities deserve to be
represented in the outcome: if a certain fraction of the voting popu-
lation has similar preferences, they should approve at least roughly
the same fraction of candidates in the committee. Much progress has
been made in this direction, and many properties (or axioms) that
formally capture this notion have been proposed (such as extended
justified representation [1] or priceability [11]), as well as concrete
voting rules that embody this property (for instance, PAV [9, 17], the
method of equal shares [11], Phragmén’s sequential rule [6]).

The main contribution of our paper is to look at the other side
of the question, which has not received as much attention: overrep-
resentation. In short, this happens when a cohesive group of voters
controls a fraction of candidates in the committee that is much larger
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than their size would warrant. To illustrate this, consider the follow-
ing example. Suppose that a group of voters (say, half) is in complete
agreement: they approve exactly the same candidates. None of the
second half of the voters approve these candidates, and, addition-
ally, their preferences are quite disjoint: no candidate is approved by
more than a couple of voters. If the electorate is large enough, rules
that avoid underrepresentation (such as PAV) here would give all the
seats to the large group, even though this group constitutes only half
of the population: the large group is overrepresented. Such a situation
(for fourteen voters) is exemplified in the following picture:
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Here, the horizontal axis corresponds to voters named from 1 to
14, and a voter approves all and only the candidates above her (for
example, voter 11 approves of candidates c10, c12 and c13). Indeed,
in this example, if we want to choose 3 candidates, PAV would select
c1, c2 and c3.

Depending on the application, avoiding overrepresentation can be
as important as guaranteeing representation (or even more). In parlia-
mentary apportionment [2, 12] (which is, formally, a special case of
committee voting), avoiding overrepresentation is equivalent to what
is known as respecting upper quota (or upper frame). This notion
has received much attention and can be seen as a way to favour small
states. Going in a more technical direction, Cevallos and Stewart [7]
highlight the connection between overrepresentation and security in
distributed systems, for example blockchain networks. More specif-
ically, Boehmer et al. [3] study overrepresentation in the context of
Polkadot, a blockchain with a mechanism based on multi-winner vot-
ing, insisting again on the link between overrepresentation and secu-
rity. Note that both works focus on the quantitative study of overrep-
resentation, rather than its axiomatic analysis.

As mentioned earlier, despite the importance of this matter, pre-
vious work has mostly focused on avoiding underrepresentation. In-
deed, rules that respect upper quota have received almost no atten-
tion. For example, while it is known that the aforementioned PAV
rule is the only rule among the class of Thiele rules (a normatively



attractive family of rules) that satisfies strong guarantees against un-
derrepresentation (such as d’Hondt proportionality [9] or extended
and proportional justified representation [1, 14]), no corresponding
results are known for the issue of overrepresentation. Indeed, even
defining a good upper quota axiom already poses some conceptual
difficulties (which we explore in Section 3).

We intend to close this gap. Towards this end, we give two main
contributions. First, we introduce a strong and appealing upper quota
axiom, called justifiable upper quota. While this axiom is not satisfi-
able within the familiar class of Thiele rules, it is in the class of com-
posite Thiele rules. The latter is analogous to the class of composite
social choice scoring functions in standard single-winner voting [18].
Intuitively, composite Thiele rules are defined through a sequence of
Thiele rules and work in stages. First, we compute the result of the
first Thiele rule. Then, at each subsequent stage, we apply the next
rule to break the ties of the previous stage. To the best of our knowl-
edge, this is the first paper to introduce this class.

Our second main contribution (Theorem 2) shows that, among this
general class, justifiable upper quota pinpoints a unique rule: Adams-
AV. This rule is the natural extension to the committee voting setting
of an apportionment method proposed by John Quincy Adams. The
latter method is notable as the only population monotone1 one that
respects upper quota [2], which, as discussed above, corresponds to
avoiding overrepresentation in the apportionment setting. To the best
of our knowledge, although Lackner and Skowron [9] briefly men-
tioned this rule, our work is the first to initiate the axiomatic study of
Adams-AV.

The paper is organised as follows. First, we introduce the neces-
sary background (Section 2). In Section 3, we present some chal-
lenges in defining a proper upper quota axiom for committee vot-
ing, and introduce our main axiom: justifiable upper quota. We prove
our main result (a characterisation of Adams-AV among composite
Thiele rules in terms of JUQ) in Section 4. We discuss a strengthen-
ing of JUQ, which Adams-AV also satisfies, in Section 5. Section 6
concludes with pointers to future work.

2 Preliminaries
In this section, we introduce the model of approval-based committee
voting [10] as well as a special case of it, apportionment. Then, we
will introduce a family of voting rules called composite Thiele rules.

As usual, given a natural ℓ ∈ N, we define [ℓ] = {1, . . . , ℓ}.
Furthermore, given a set S, we denote by P(S) its powerset and as
Pℓ(S) = {T ∈ P(S) : |T | = ℓ}.

2.1 Approval-Based Committee Voting

Let N = {1, . . . , n} be the set of voters and C with |C| = m > 0
be the set of candidates. An approval profile (or simply profile) is
a tuple A = (A1, . . . , An) ∈ P(C)n where Ai ⊆ C for every
i ∈ [n]. Given a candidate c ∈ C, we indicate its supporters as

N(c) = {i ∈ N : c ∈ Ai}

and the size of this set as nc = |N(c)|.
Let k ∈ N. We are interested in selecting a k-committee, that is,

a k-sized subset of C. A voting rule is a function F that maps every
profile A and committee size k to a nonempty W ⊆ Pk(C). Ideally,

1 Informally, population monotonicity refers to the idea that if a party receives
more votes, it should not get fewer seats. The formal definition is given
by Balinski and Young [2].

we would want to select a single k-committee; we define F to be set-
valued to model ties. Given two voting rules F and G, we say that F
is a refinement of G if F (A, k) ⊆ G(A, k) for all inputs.

Given a set of voters N ′ ⊆ N , we define its quota as

q(N ′) = k
|N ′|
|N | .

We also define qc = q(N(c)). The quota of a group represents the
fraction of candidates they deserve to have in the committee (assum-
ing that the preferences of this group are similar enough). We call
⌈q(N ′)⌉ the upper quota and ⌊q(N ′)⌋ the lower quota of N ′. Intu-
itively, if the group N ′ controls more than ⌈q(N ′)⌉ candidates in the
committee, it is overrepresented. We will define this notion formally
later (Definition 4).

2.2 Apportionment

The apportionment setting is a special case of the committee voting
model. A pair A and k is an apportionment instance if for every
i, j ∈ N we have either Ai = Aj or Ai ∩Aj = ∅. Furthermore, for
every i ∈ N we must have |Ai| = k. An apportionment method is a
voting rule whose domain is restricted to apportionment instances.

We introduce additional notation. We partition N into s disjoint
equivalence classes called parties, that is, N = P1 ∪ · · · ∪ Pt. Two
voters have the same ballot if and only if they belong to the same
party. Given a committee W , we define the seats given to party Pℓ as
aℓ(W ) = |Ai ∩W | (for some arbitrary i ∈ Pℓ). When W is fixed,
we just write aℓ.

An apportionment method satisfies apportionment upper quota
(resp., lower quota) if, for every outcome W selected by this method
and nonempty party Pℓ, we have that aℓ ≤ ⌈q(Pℓ)⌉ (resp., aℓ ≥
⌊q(Pℓ)⌋).

2.3 Composite Thiele rules

A popular class of voting rules is the class of Thiele rules, intro-
duced by Thorvald N. Thiele [17] in the late 19th century. These
rules are well-studied in approval-based committee voting (see the
book by Lackner and Skowron [10]). Intuitively, each Thiele rule is
defined by a weight function which determines the score that every
voter assigns to a committee given the number of candidates she ap-
proves in that committee.

In this paper, we consider a generalisation of this family, called
composite Thiele rules. A composite Thiele rule is defined by a se-
quence of Thiele rules. First, we select a set of winning committees
through the first rule. Then, we select a subset of the committees se-
lected in the previous step through the second rule. This process con-
tinues until either the rules are finished or we have reached a fixed
point.

Definition 1. A weight function is a function w : N → R≥0 such
that w(1) = 1 and w(s) ≥ w(s+1) for every s ∈ N. We sometimes
write weight functions as vectors. Given A, k, and i ∈ N , we define

scorew(Ai,W ) =

|Ai∩W |∑
s=1

w(s)

and scorew(A,W ) =
∑
j∈N

scorew(Aj ,W ).



The simple or 1-composite Thiele rule corresponding to w is then

Fw(A, k) = argmax
W∈Pk(C)

scorew(A,W ).

Given two weight functions w1 and w2, define

(Fw2 ◦ Fw1) (A, k) = argmax
W∈Fw1

(A,k)

scorew2(A,W ).

Given any sequence w = (w1, w2, . . .) of length ℓ ∈ N ∪ {∞}
of pairwise-distinct weight functions, the corresponding ℓ-composite
Thiele rule is

Fw(A, k) =

ℓ⋂
i=1

(Fwi ◦ · · · ◦ Fw1)(A, k).

Note that, if w = (w1, . . . , wℓ) is finite, then the above collapses to

Fw(A, k) = (Fwℓ ◦ · · · ◦ Fw1) (A, k).

We allow for ∞-composite Thiele rules to also capture rules
such as the one given by the infinite sequence (1, 0, 0, . . .),
(1, 1, 0, 0, . . .), (1, 1, 1, 0, 0, . . .), etc. This is an analogue to the
leximin social welfare function [13, 15].2

To illustrate our definition further, we present some standard
Thiele voting rules.

Definition 2. We define three simple Thiele voting rules:

• Approval Voting (AV) is the Thiele rule given by w =
(1, 1, 1, . . .).

• Chamberlin-Courant (CC) is the Thiele rule given by w =
(1, 0, 0, . . .).

• Proportional AV (PAV) is the Thiele rule given by w =
(1, 1/2, 1/3, . . .).

Let us give an intuitive idea of these rules. AV simply picks the
k-committees with the highest number of approved candidates. On
the other hand, CC selects the k-committees that cover as many vot-
ers as possible, where a voter is covered if she approves at least one
candidate in the committee. One can think of AV and CC as lying on
two different ends of the spectrum of (simple) Thile rules: while AV
is entirely utilitarian, CC tries to satisfy all voters whenever possible.
PAV lies, in some sense, in between these two. Given a k-committee
W , under PAV each voter assigns to W a score corresponding to
the |Ai ∩W |-th harmonic number; the k-committees with the high-
est total score are selected. The intuition here is that any additional
candidate a voter approves in the committee will yield diminishing
returns.

Restricted to the apportionment setting, PAV coincides with
d’Hondt’s method (also known as Jefferson’s), which is notable as
the only apportionment method that satisfies lower quota as well as
population monotonicity [2]. In fact, PAV is the only Thiele rule con-
sistent with d’Hondt [9], as well as the only one that satisfies PJR [14]
and EJR [1], two popular lower quota axioms in the committee-
voting setting. In light of this, we focus on the following rule.

Definition 3 (Adams-AV). Adams-AV is the 2-composite Thiele rule
given by w1 = (1, 0, 0, . . .) and w2 = (1, 1, 1/2, 1/3, . . .).

2 Observe that, since we assume n to be fixed, we do not technically need
infinite sequences to capture this rule. However, we stick with this definition
(which accommodates for electorates of variable size) as our results also
hold for this more general case.

Intuitively, Adams-AV can be seen as a mixture between CC and
(a variant of) PAV. First, we select the committees that cover as many
voters as possible. Among those, we select the committees that max-
imise the following score: each voter assigns to every W a score
corresponding to the (|Ai ∩ W | − 1)-th harmonic number (or 0 if
|Ai ∩W | = 0).

Example 1. Consider the following profile: A =
({a, b, c, d}, {a, b, c, d}, {a, b, c, e}, {d}, {b, c, e}, {c, e}) and
let k = 2. Here, AV picks only {b, c}, the two most approved
candidates. CC selects {c, d} and {d, e}, as they both cover all
voters. PAV selects {b, c} and {c, d}. Finally, among the two
CC-optimal committees, Adams-AV picks only committee {c, d}.
△

Adams-AV, when restricted to the apportionment setting, coin-
cides with a method proposed by John Quincy Adams, which is the
only apportionment method that respects upper quota and satisfies
population monotonicity [2]. It is thus natural to wonder, mirroring
the above discussion about PAV, whether Adams-AV can be charac-
terised among composite Thiele rules by an appropriate upper quota
axiom. Indeed, as we shall see (Theorem 2), this is the case.

3 Justifiable Upper Quota
In this section, we will define our main upper quota axiom.

We will start with a discussion on why defining upper quota ax-
ioms in the context of committee voting poses some additional chal-
lenges compared to lower quota.

Example 2. Consider profile A = ({a, b, c}, {d, e, f}, {g}) and
let k = 6. This is almost an apportionment instance, but here vot-
ers approve fewer than k candidates. Since no two voters jointly ap-
prove of any candidate, one would expect here to have three groups
of voters (each consisting of a single voter) that must not be over-
represented. However, all three singleton groups have an upper quota
of ⌈6 · 1/3⌉ = 2 and, for any k-committee W , at least one voter is
approving 3 candidates in W . Hence, every outcome overrepresents
at least one group. △

This example suggests that any satisfiable upper quota axiom
should either (1) not consider the first two voters as two distinct
groups subject to upper quota, or (2) have additional conditions that
allow for some overrepresentation when unavoidable.

We believe that option (1) would require a rather unnatural defi-
nition of what a “group” of voters is, and that option (2) results in a
much more intuitively appealing axiom. We propose the following.

Definition 4 (Justifiable Upper Quota). Committee W satisfies Jus-
tifiable Upper Quota (JUQ) if, whenever there is a c ∈ W such that
N(c) ̸= ∅ and

|Ai ∩W | > ⌈qc⌉ for all i ∈ N(c),

then there exists no d ∈ C \W such that N(d) ̸= ∅ and

|Ai ∩ (W ∪ {d} \ {c})| ≤ ⌈qd⌉ for all i ∈ N(d).

The intuition behind this axiom is as follows. We consider a com-
mittee that overrepresents a group to violate our axiom only if there
is another group which could receive an additional candidate and still
not be overrepresented. Indeed, the term justifiable stems from this:



we should be able to justify each violation of upper quota by arguing
that any swap from the current committee would still entail a viola-
tion.

Even when every outcome overrepresents some group, JUQ is still
satisfiable.

Example 3. Let us revisit the scenario of Example 2, where A =
({a, b, c}, {d, e, f}, {g}) and k = 6. Consider, e.g., outcome W1 =
{a, b, c, d, e, g}. This satisfies JUQ. Indeed, consider, for example,
c ∈ W1. We have that ⌈qc⌉ = 2, but voter 1 has satisfaction 3. How-
ever, the only candidate not in W1 is f , and we have that, if we were
to replace c with f in W1, then voter 2 would get a satisfaction of
3 > 2 = ⌈qf⌉. On the other hand, outcome W2 = {a, b, c, d, e, f}
violates JUQ. Indeed, again c is a witness for an upper quota viola-
tion. However, now we should replace c with g, as ⌈qg⌉ = 2 > 1.
△

We now discuss our axiom further. Observe that we require the
following: if all members in a group N(c) are above their upper
quota, and there is another group N(d) where all members would
be below upper quota after replacing c with d, then we should do
so. Note the asymmetry: it would be perhaps more natural to require
only for some member of N(d) to be below her upper quota to war-
rant the replacement of c by d. Our weaker notion is already enough
to characterise Adams-AV among composite Thiele rules, and thus
we believe it is strong enough to be useful. However, we note that
Adams-AV would not satisfy the alternative axiom outlined above.
Indeed, consider 8-voter profile

A = ({a}, {a}, {a, d}, {a, b, c}, {a, b, c}, {a, b, c},
{a, b, c, d}, {a, b, c, d})

and let k = 3. Adams-AV here picks only {a, b, c}. However, N(c)
is overrepresented as all its members have satisfaction 3 > 2 = ⌈qc⌉.
If we switch c with d, then N(d) would not be overrepresented (un-
der the alternative definition) as the voter with ballot {a, d} would
have satisfaction 2 = ⌈qd⌉. Hence, Adams-AV violates this variant
of JUQ.

Furthermore, we implicitly assume that the only groups of voters
that are not to be overrepresented are those of the form N(c) for
some candidate c ∈ C. This is similar to the notion of a “group” that
underpins well-studied lower quota axioms such as EJR+ [5], but
slightly more restrictive. Indeed, one could relax our notion by also
requiring that any N ′ with N ′ ⊆ N(c) for some c ∈ C should not
be overrepresented. We discuss the resulting axiom in Section 5 and
show that Adams-AV still satisfies this. Here, we stick with the cur-
rent definition as it results in a weaker axiom and thus in a stronger
characterisation.

Moreover, note that we require both N(c) and N(d) to be
nonempty. The two conditions, together, make JUQ more agnostic
to efficiency considerations; the first one avoids excluding inefficient
solutions, while the second one avoids restricting attention to ineffi-
cient solutions. Indeed, suppose C = {a, b}, A = ({a}, {a}) and
k = 1. If we did not require N(c) ̸= ∅, then W = {b} would vi-
olate JUQ. However, although this committee is clearly inefficient,
it does not overrepresent any group. In general, if we did not require
N(c) to be nonempty, then JUQ would enforce the exclusion of every
candidate c with no supporters, unless replacing this candidate with
some other d would overrepresent N(d). On the other hand, consider
C = {a, b, c, d, e}, A = ({a}, {b, c, e}) and k = 4. If we did not
require N(d) ̸= ∅, then {a, b, c, e} would violate JUQ, as the latter

would require replacing c with d. This is, however, clearly an ineffi-
cient solution. With the current Definition 4, {a, b, c, e} satisfies JUQ
(as do other committees, such as {a, b, c, d}).

Finally, a natural requirement for upper quota axioms is to extend
apportionment upper quota, which is indeed the case for JUQ.

Proposition 1. For apportionment instances, JUQ is equivalent to
apportionment upper quota.

Proof. Consider an apportionment instance A and k. Fix a k-
committee W . If W satisfies apportionment upper quota, then it triv-
ially satisfies JUQ. Then, suppose it satisfies JUQ.

Towards a contradiction, assume that there is some c ∈ W with
N(c) ̸= ∅ and |Ai ∩ W | > ⌈qc⌉ for all i ∈ N(c). Without loss
of generality, assume N(c) = P1. By JUQ we must have, for all
d ∈ C\W with nonempty N(d), that |Ai∩(W ∪{d}\{c})| > ⌈qd⌉
for some (equivalently, all) i ∈ N(d). This implies that every party
Pℓ has aℓ ≥ ⌈q(Pℓ)⌉ and that a1 ≥ ⌈q(P1)⌉+ 1. Hence,

k ≥
t∑

ℓ=1

aℓ >

t∑
ℓ=1

⌈
k · |Pℓ|

n

⌉
≥

⌈
t∑

ℓ=1

k · |Pℓ|
n

⌉
= k,

where t is the number of parties. This is a contradiction: hence, for no
c ∈ W with N(c) ̸= ∅ we have |Ai ∩W | > ⌈qc⌉ for all i ∈ N(c).
This means that W satisfies apportionment upper quota.

4 Main result: JUQ characterises Adams-AV

We now state and prove our main result: JUQ characterises Adams-
AV in the class of composite Thiele rules.

Theorem 2. A composite Thiele rule satisfies justifiable upper quota
if and only if it is a refinement of Adams-AV.

Note that the second part of the statement (only Adams-AV can
satisfy JUQ) can already be derived from the theory of apportion-
ment, at least when it comes to simple Thiele rules. Indeed, we know
that every simple Thiele rule corresponds to a unique divisor method
(a class of normatively appealing apportionment methods) when re-
stricted to apportionment instances [9]. Since all divisor methods ex-
cept Adams’ violate apportionment upper quota [2], we know from
Proposition 1 that no simple Thiele rule can satisfy JUQ. Nonethe-
less, we give a direct proof of our claim.

Proof of Theorem 2. First, we show that any refinement F of
Adams-AV satisfies JUQ. Let w1 = (1, 0, 0, . . .) and w2 =
(1, 1, 1/2, 1/3, . . .). Fix a profile A and committee size k. Let W be
a k-committee selected by F and suppose towards a contradiction
that it violates JUQ, i.e., we could swap some c ∈ W with some
d ∈ C \W .

In the following, let W ′ = (W \ {c}) ∪ {d}. Since nc > 0,
⌈qc⌉ ≥ 1 and consequently |Ai ∩ W | ≥ 2 for every i ∈ N(c).
With this, we derive that all i with |Ai| > 0 are covered by both W
(as otherwise we could remove c from W and cover an additional
voter) and W ′ (as only the members of N(c) can suffer a decrease in
satisfaction from W to W ′). Thus, given the Adams-AV-optimality
of W , we must have scorew2(A,W ) ≥ scorew2(A,W ′). Since we
only swap c and d, the satisfaction of every i ∈ N with {c, d} ⊆ Ai

or {c, d}∩Ai = ∅ is the same for both W and W ′. Every other voter
has satisfaction of at least 1, and hence we must have



∑
i∈N(c)\N(d)

|Ai∩W |∑
s=2

1/(s−1) +
∑

i∈N(d)\N(c)

|Ai∩W |∑
s=2

1/(s−1) ≥

∑
i∈N(c)\N(d)

|Ai∩W ′|∑
s=2

1/(s−1) +
∑

i∈N(d)\N(c)

|Ai∩W ′|∑
s=2

1/(s−1),

which, given that |Ai ∩W ′| = |Ai ∩W | − 1 for i ∈ N(c) \N(d)
and |Ai ∩W ′| = |Ai ∩W |+ 1 for i ∈ N(d) \N(c), yields∑

i∈N(c)\N(d)

1

|Ai ∩W | − 1
≥

∑
i∈N(d)\N(c)

1

|Ai ∩W | .

By definition of JUQ, the satisfaction of any i ∈ N(c) is at least
⌈qc⌉+1, while the satisfaction of any i ∈ N(d) is at most ⌈qd⌉− 1.
Hence, the above inequality implies (nc−ℓ)/⌈qc⌉ ≥ (nd−ℓ)/(⌈qd⌉−1)

with ℓ = |N(c) ∩N(d)|, and thus

nc − ℓ

k · nc/n
≥ nc − ℓ

⌈k · nc/n⌉ ≥ nd − ℓ

⌈k · nd/n⌉ − 1
>

nd − ℓ

k · nd/n
.

Therefore, ℓ > 0 and nc > nd must hold. These two facts im-
ply, respectively, that there is some i⋆ ∈ N(c) ∩ N(d) and that
⌈qc⌉ ≥ ⌈qd⌉. Together with the definition of JUQ, this means that
⌈qc⌉ ≥ ⌈qd⌉ ≥ |A(i⋆) ∩ W ′| = |A(i⋆) ∩ W | > ⌈qc⌉, our desired
contradiction.

Next, we show that any other composite Thiele rule fails JUQ. Fix
w and suppose Fw satisfies JUQ. We will work in three steps, using
three profiles.

1. First, we show that w1 = (1, 0, . . .).
2. Second, we show that w has at least two entries and that w2(s) >

0 for all s ∈ N.
3. Finally, we show that w2 = (1, 1, 1/2, 1/3, . . .).

The above is sufficient to show that Fw refines Adams-AV.
First, fix k = 2 and consider n ∈ 2N with n > 2. Suppose that

there are n/2 + 2 candidates, namely, C = {c1, . . . , cn/2, c, d}.
Construct the following profile:

c1 · · · cn/2 c

d

1 · · · n/2 n/2 + 1 · · · n

In words, every voter i ∈ [n/2] approves {ci}, while the remaining
n/2 voters all approve {c, d}. Since w1(1) = 1, any 2-committee
W with W ∩ {c, d} = ∅ cannot be in the outcome, as we would
increase scorew1(A, k) by substituting any ci ∈ W with either c or
d. Moreover, ⌈qx⌉ = 1 for all x ∈ C, and hence W = {c, d} must
lose to any 2-committee W ′ containing exactly one candidate from
{c, d}. Therefore,

n/2 · (w1(1) + w1(2)) ≤ (n/2 + 1) · w1(1) =⇒
n/2 · w1(2) ≤ w1(1).

Since w does not depend on n and n can be arbitrarily large, w1(2) =
0.

Next, fix k > 2. We construct a profile with k+1 voters and k+1
candidates as follows:

c1

...

ck−1

dc

1 2 3 · · · k k + 1

In words, let C be partitioned as C = C′ ∪ {c} ∪ {d}. Voter
1 approves C′ ∪ {c}, whereas every voter in N \ {1} approves
C′ ∪ {d}. Observe that the k-committee W = C′ ∪ {c} would
violate JUQ, as ⌈qc⌉ = ⌈k/(k+1)⌉ = 1 < k = |A(k + 1) ∩ W |
and ⌈qd⌉ = ⌈k · k2

/(k+1)⌉ = k. This shows that w must contain
at least two entries; since every committee covers all voters, all k-
committees are w1 optimal and thus W would be among the selected
outcomes. Hence, assume w = (w1, w2, . . .) with w2(2) > 0 (recall
that weight functions must be pairwise-distinct). This fact implies, in
turn, that any winning committee cannot contain both c and d, as
otherwise we could increase the w2-score of the outcome. Hence, W
must lose to (W \ {c}) ∪ {d}, and therefore

k∑
s=1

w2(s) + k

k−1∑
s=1

w2(s) <

k−1∑
s=1

w2(s) + k

k∑
s=1

w2(s) =⇒

w2(k) < k · w2(k).

Since k was arbitrarily chosen, we have proven that w2 is strictly
positive on all inputs.

From now on, we can safely assume that w2(1) = w2(2) = 1. Fix
k > 2. Pick an ϵ ∈ Q \ {0} where |ϵ| is arbitrarily small and some
ℓ ∈ N such that |ℓ · ϵ| ∈ N. Let there be n = ℓ(k + ϵ) voters and
k + 1 candidates. There are three distinguished candidates, namely,
a, c and d. Construct the following profile:

a

c c1

...

ck−2

d

⟨ℓ(k + ϵ− 1) voters⟩

⟨ℓ voters⟩

⟨ℓ(k + ϵ) voters⟩

In words, we have a group of ℓ(k + ϵ − 1) voters who approve
all candidates in C \ {c}, including a and d. The remaining ℓ voters
only approve {a, c}. First, any k-committee covers all voters and
since w2(s) > 0 for all s ∈ N, we cannot pick committee C \{a} as
we could replace d with a and strictly improve the w2-score. Next,

qc = k · ℓ

ℓ(k + ϵ)
and qd = k · ℓ(k − 1 + ϵ)

ℓ(k + ϵ)
.



We distinguish two cases based on the sign of ϵ.

• Assume ϵ > 0. Then, one can compute ⌈qc⌉ = 1 and ⌈qd⌉ = k.
Consequently, we must not pick any W with c ∈ W , as otherwise
we would have |Ai ∩W | = 2 > ⌈qc⌉ for all i ∈ N(c) while the
other group is all strictly under its upper quota. Therefore, given
any committee W ′ that does not contain c (but contains a),

ℓ(w2(1) + w2(2)) + ℓ(k + ϵ− 1)

k−1∑
s=1

w2(s) <

ℓw2(1) + ℓ(k + ϵ− 1)

k∑
s=1

w2(s),

which implies
w2(2)

k + ϵ− 1
< w2(k).

Since w2(2) = 1 and since this holds for any k ≥ 3 and arbitrarily
small ϵ > 0 we get that w2(s) ≥ 1/(s−1) for all s > 1.

• Assume ϵ < 0. Then, one can compute ⌈qc⌉ ≥ 2 and ⌈qd⌉ < k.
In contrast to the previous case, we must not pick W = C \ {c}.
By analogous computations we obtain w2(k) < w2(2)

k+ϵ−1
and thus

w2(s) ≤ 1/s−1 for all s > 1.

Combining the two cases, we have shown w2(s) = 1/s−1 for s >
1, completing the proof.

5 Strengthening JUQ
We conclude by discussing a strengthening of JUQ.

As noted in Section 3, our definition of JUQ focuses on groups
of voters N(c) for some c ∈ C. One could also consider subsets of
such sets. This is similar to what is done, for instance, in EJR+ [5],
an appealing lower quota axiom. Towards this end, we introduce the
following axiom.

Definition 5 (Subset Justifiable Upper Quota). Committee W satis-
fies Subset Justifiable Upper Quota (SJUQ) if, whenever there is a
c ∈ W such that N(c) ̸= ∅ and

|Ai ∩W | > ⌈qc⌉ for all i ∈ N(c),

then there exists no d ∈ C \W and nonempty N ′ ⊆ N(d) such that

|Ai ∩ (W ∪ {d} \ {c})| ≤ ⌈q(N ′)⌉ for all i ∈ N ′.

Note that one could go further in this direction and apply the same
idea to N(c). Indeed, in the first part of the definition, we could have
that “whenever there is a c ∈ W and a nonempty N† ⊆ N(c) such
that |Ai ∩ W | > ⌈q(N†)⌉ for all i ∈ N† [...]”. This would not be
an appealing definition: it would imply, for instance, that whenever
k ≤ n, all voters must approve at most 1 candidate in the committee.

SJUQ implies JUQ by definition, but the converse is not true.

Example 4. Let A = ({a}, {d}, {a, b, c, d}) and k = 4. Com-
mittee W = {a, b, c} satisfies JUQ, but not SJUQ. Indeed, we have
that N(c) consists only of voter 3, who is approving 3 candidates in
W while ⌈qc⌉ = 2. However, the only candidate outside W is d, and
voter 3 is in N(d). Hence, JUQ is satisfied.

On the other hand, SJUQ is not satisfied. Indeed, consider the sub-
set N ′ ⊆ N(d) consisting only of voter 2. Then, if we replace c with
d in the outcome, we would have that this voter approves 1 candidate
in the committee, and that ⌈q(N ′)⌉ = 2. Hence, SJUQ is violated.

Observe that, here, W = {a, b, d} satisfies both axioms. △

We get the following.

Theorem 3. Any refinement of Adams-AV satisfies SJUQ.

Proof. We assume k > 1, as otherwise the proof is trivial. Sup-
pose that W is selected by some refinement of Adams-AV. As-
sume towards a contradiction that there is some c, d, and N ′ as
described in the definition of SJUQ (Definition 5). Let |N ′| = n′

and |N(d) \ N ′| = n†. Moreover, let ℓ′ = |N(c) ∩ N ′| and
ℓ† = |N(c)∩ (N(d) \N ′)|. Finally, let q′ = ⌈k · n′

/n⌉. By noticing
that all voters in N(d) \ N ′ \ N(c) have satisfaction at most k − 1
with W , with arguments analogous to the first part of the proof of
Theorem 2, we get

(nc − ℓ′ − ℓ†)

⌈qc⌉
≥ (n′ − ℓ′)

(⌈q′⌉ − 1)
+

(n† − ℓ†)

k − 1
=⇒

n(nc − ℓ′ − ℓ†)

k · nc
>

n(n′ − ℓ′)

k · n′ +
(n† − ℓ†)

k − 1
=⇒

ℓ′
(

1

n′ −
1

nc

)
>

k

n(k − 1)

(
n† − ℓ†

)
+

ℓ†

nc
.

Since n† ≥ ℓ†, we derive that ℓ′ > 0 and nc ≥ n′. The proof
concludes like the first part of the proof of Theorem 2.

6 Conclusion and research directions
In this paper, we have defined an upper quota axiom for approval-
based committee elections, called justifiable upper quota (Defini-
tion 4). Defining this property was non-trivial and, to the best of
our knowledge, this is the first axiom of this kind in the literature.
Our notion is interesting in that it characterises Adams-AV among
the class of composite Thiele rules (Theorem 2). Given that in the
apportionment setting Adams’ is the only divisor method satisfying
upper quota, and given the connection between Thiele rules and divi-
sor methods [9], characterising Adams-AV among composite Thiele
rules seems a natural consistency-check for any reasonable upper
quota axiom. Furthermore, we have considered a strengthening of
our axiom (Definition 5), and shown that Adams-AV also satisfies
this (Theorem 3).

We suggest different avenues for future research. Firstly, one
could extend the study of upper quota axioms beyond composite
Thiele rules. Consider Phragmén’s sequential rule (see the paper
by Brill et al. [6] and the references therein) or the method of equal
shares [11] with standard completion methods (i.e., completion by
budget increase, by AV, or by sequential Phragmén). All these rules
satisfy interesting lower quota notions [10]. However, all fail JUQ.
For example, if A = ({a}, {a}, {b}, {a, c}, {a, c}) and k = 2,
sequential Phragmén and the method of equal shares with standard
completion methods all pick {a, c}, which fails JUQ. Moreover,
with profile

A = ({a, e}, {a, b, c}, {a, b, c, d}, {a, b, d, e}, {a, b, d, e},
{a, b, d, e}, {a, c, e, f}, {a, b, d, e, f})

and k = 5, the method of equal shares without completion returns
(among others) {a, b, c, e}, which fails JUQ. Is there any (possibly
non-exhaustive) variant of these rules that satisfies JUQ? If not, is
there any other poly-time computable rule that satisfies it?

More generally, it is important to understand the relationship be-
tween JUQ and standard lower quota axioms such as EJR or price-
ability, possibly without requiring exhaustiveness (i.e., returning ex-
actly k candidates). Are they compatible? If so, is there any natural



rule that satisfies both? Based on our previous discussion, we know
that many attractive rules that satisfy such axioms fail JUQ. On the
other hand, we know that JUQ is compatible at least with JR, a weak
lower quota axiom, as JR is satisfied by CC [1] (and thus by Adams-
AV).

Next, one could look at other quota notions. For example, the
Sainte-Laguë (also known as Webster’s) apportionment method is
the only divisor method that stays near quota [2]. That is, it is never
possible to transfer a seat from one party to another while bringing
both parties closer to their quotas. Can one define such an axiom in
the context of committee voting, and characterise the corresponding
committee voting rule (known as SLAV [10]) through this notion?

Finally, one could extend our partial characterisation of Adams-
AV to a full characterisation. Indeed, we have used JUQ to char-
acterise this rule among composite Thiele rules. What axioms are
necessary to fully characterise it? The axiomatic characterisation of
committee scoring rules proposed by Lackner and Skowron [9] is a
natural starting point. It would be interesting to see whether by relax-
ing continuity (one of the axioms they use) one could achieve a sim-
ilar characterisation of composite scoring rules and thus of Adams-
AV. Indeed, in the context of single-winner voting, continuity acts
as a separator between composite and non-composite social choice
scoring functions in the analogous characterisation by Young [18].
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