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Abstract

Manipulation, bribery, and control are well-studied ways of changing the outcome of an elec-
tion. Many voting systems are in the general case computationally resistant to some of these
manipulative actions. However when restricted to single-peaked electorates, these problems
suddenly become easy to solve. Recently, Faliszewski, Hemaspaandra, and Hemaspaan-
dra [FHH11] studied the complexity of dishonest behavior in nearly single-peaked electorates.
These are electorates that are not single-peaked but close to it according to some distance
measure.
In this paper we introduce several new distance measures regarding single-peakedness. We
prove that determining whether a given profile is nearly single-peaked is in many cases NP-
complete. Furthermore, we explore the relations between several notions of nearly single-
peakedness.

1 Introduction
Voting is a very useful method for preference aggregation and collective decision-making. It has
applications in very broad settings ranging from politics to artificial intelligence and further topics
in computer science (see, e.g., [DKNS01, ER97, GMHS99]). In the presence of huge data volumes,
the computational properties of voting rules are worth studying. In particular, we usually want to
determine the winners of an election quickly. On the other hand we want to make various forms of
dishonest behavior computationally as hard as possible.

Bartholdi, Tovey, and Trick [BTT89] were the first to study the computational aspects of ma-
nipulation in elections, where a group of voters cast their votes insincerely in order to reach a de-
sired outcome. Other types of dishonest behavior are control, where an external agent makes struc-
tural changes on the election such as adding/deleting/partitioning either candidates or voters (see,
e.g., [BTT92]) in order to reach a desired outcome, or bribery, where an external agent changes
some voters’ votes in order to change the outcome of the election (see, e.g., [FHH09]). For an
overview and many natural examples on bribery, control, and manipulation we refer to the survey of
Baumeister et al. [BEH+10].

Traditionally, the complexity of such attacks on the outcome is studied under the assumption that
in each election any admissible vote can occur. However, there are many elections where the diver-
sity of the votes is limited in a sense that there are some admissible votes nobody would ever cast.
One of the best known examples is single-peakedness, introduced by Black [Bla48]. It assumes that
the votes are polarized along some linear axis. The study of the computational aspects of elections
with single-peaked preferences was initiated by Walsh [Wal07] (see also [FHHR11, BBHH10]). In
many cases NP-hardness results from the general cases turn out to be easy in single-peaked societies.
A recent line of research initiated by Conitzer [Con09] and by Escoffier, Lang, and Öztürk [ELÖ08]
suggests that many elections are not perfectly single-peaked but are close to it with respect to some
metric. Faliszewski, Hemaspaandra, and Hemaspaandra [FHH11] introduced various notions of
nearly single-peaked elections and showed that the complexity of manipulative-actions jumps back
to NP-hardness in many cases.

In this paper we consider the notion of k-maverick single-peakedness and k-local swaps intro-
duced by Faliszewski, Hemaspaandra, and Hemaspaandra [FHH11]. In addition we follow the sug-
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gestions of Escoffier, Lang, and Öztürk [ELÖ08] and formally define the two nearly single-peaked
notions k-candidate deletion and k-additional axes. Furthermore, we introduce three new notions
of nearly single-peakedness, k-local candidate deletion, k-global swaps, and k-candidate partition.
We show connections between the existing and new notions, and we study the complexity of de-
termining whether a given profile is nearly single-peaked with respect to some axis. This problem
was introduced by Escoffier, Lang, and Öztürk [ELÖ08] as single-peaked consistency. We show
that single-peaked consistency is computationally hard for four notions of nearly single-peakedness
given in this paper. The complexity of the remaining three notions is still open.

Related Work Our paper fits in the line of research on single-peaked and nearly single-peaked
preferences. Faliszewski et al. [FHHR11] and Brandt et al. [BBHH10] investigate the complexity
of dishonest behavior (e.g., the complexity of manipulation and control) in electorates with single-
peaked preferences as well as the winner problem. They do not consider nearly single-peaked pref-
erences, but mention them as future work.

In the context of nearly single-peaked preferences the most relevant paper is by Faliszewski,
Hemaspaandra, and Hemaspaandra [FHH11]. They introduce several notions of nearly single-
peakedness and analyze the complexity of bribery, control, and manipulation under those conditions.
In contrast, we are not analyzing dishonest behavior in elections, but we are studying the complexity
of nearly single-peaked consistency.

The question whether a given profile is single-peaked has been recently investigated by Escoffier,
Lang, and Öztürk [ELÖ08]. The difference in their work is that they have not considered nearly
single-peakedness but they only pointed it out as a possible future research direction.

The idea of measuring the distance of votes with the number of required swaps required to
make them identical already appears in Dodgon’s voting rule (see, e.g., [MN08] for a discussion).
This idea has been widely used since then. Elkind, Faliszewski, and Slinko used swaps of adjacent
candidates in votes in the context of bribery [EFS09]. They assumed that a briber can perform a
number of swaps in the votes in order to make his favourite candidate win the election. In our paper,
we use swaps as a distance measure for nearly single-peakedness. We do not want to change the
outcome of an election, we just want to measure the swap distance of a given profile to the nearest
single-peaked profile.

Finally, we remark that single-peaked preferences have been considered in the context of pref-
erence elicitation [Con09] and in the context of possible and necessary winners under uncertainty
regarding the votes [Wal07].

Organization This paper is organized as follows. In Section 2, we recall some notions from
voting theory and define single-peaked preferences. In Section 3, we introduce the problems we
are investigating in our paper. Our results on the relations between the different notions of single-
peakedness and on the complexity of single-peaked consistency are presented in Section 4. Finally,
Section 5 provides some conclusions and future directions.

2 Preliminaries
Let C be a finite set of candidates, V be a finite set of voters, and let � be a preference relation (i.e.,
a tie-free and total order) over C. We call a candidate c the peak of a preference relation � if c� ci
for all ci ∈C \{c}. Let P = (�1, . . . ,�n) be a preference profile (i.e., a collection of linear orders)
over the candidate set C. We say that the preference order �i is the vote of voter i. For simplicity,
we will write for each voter i ∈ V c1c2 . . .cn instead of c1 �i c2 �i . . . �i cn. We call the peak of
voter i his highest ranked or top-ranked candidate. An election is defined as a triple E = (C,V,P),
where C is the set of candidates, V the set of voters and P a preference profile over C.



In order to define single-peaked profiles we will make use of the definition given by Escoffier et
al. [ELÖ08].

Definition 2.1 ([ELÖ08]). Let an axis A be a total order over C denoted by >. Given two candidates
ci,c j ∈C, a vote k ∈ V specified by the corresponding preference relation �k, and an axis A. Let c
be the top-ranked candidate of voter k. We say that candidates ci and c j are on the same side of the
peak of �k if one of the following two conditions holds:

(1) ci > c and c j > c, or (2) c > ci and c > c j

A vote k is said to be single-peaked with respect to an axis A if for all ci,c j ∈C that are on the same
side of the peak c of �k it holds that ci �k c j if either c > ci > c j or c j > ci > c holds (i.e., ci is
closer to the peak than c j).

A preference profile P is said to be single-peaked with respect to an axis A if and only if each
vote is single-peaked with respect to A. A preference profile P is said to be single-peaked consistent
if there is an axis A such that P is single-peaked with respect to A.

Let C′ ⊆C. By P[C′] we denote the profile P restricted to the candidates in C′. Analogously
if A is an axis over C, we denote by A[C′] the axis A restricted to candidates in C′.

Escoffier, Lang, and Öztürk present an algorithm that decides whether a given preference profile
is single-peaked consistent in time |V | · |C| [ELÖ08]. Their algorithm improves upon the runtime of
an algorithm presented in [BT86]. The corresponding decision problem is defined as follows.

SINGLE-PEAKED CONSISTENCY

Given: An election E = (C,V,P).
Question: Is P single-peaked consistent?

3 Problem Statement
In this paper we consider different notions of nearly single-peakedness. All these notions define a
distance measure to single-peaked profiles. We will now describe them and provide first (trivial)
upper bounds on these distances.

k-Maverick

The first formal definition of nearly single-peaked societies was given by Faliszewski, Hemaspaan-
dra, and Hemaspaandra [FHH11]. Consider a preference profile P for which most voters are single-
peaked with respect to some axis A. All voters that are not single-peaked with respect to A are called
mavericks. The number of mavericks defines a natural distance measure to single-peakedness. If an
axis can be found for a large subset of the voters, this is still a fundamental observation about the
structure of the votes.

Definition 3.1 ([FHH11]). Let E = (C,V,P) be an election and k a positive integer. We say that
the profile P is k-maverick single-peaked consistent if by removing at most k preference relations
(votes) from P one can obtain a preference profile P ′ that is single-peaked consistent.

Let M(P) denote the smallest k such that P is k-maverick single-peaked consistent. Note that
M(P)≤ |V |−1 always holds.

The above notion is a well-motivated distance regarding single-peakedness, but we will define
other distances which could be more useful in other cases.



k-Candidate Deletion

As suggested in [ELÖ08], we introduce outlier candidates. These are candidates that do not have
“a correct place” on any axis and consequently have to be deleted in order to obtain a single-peaked
consistent profile. Examples could be a candidate that is not well-known (e.g., a new political party)
or a candidate that prioritizes other topics than most candidates and thereby is judged by the voters
according to different criteria. The votes restricted to the remaining candidates might still have a
clear and significant structure, i.e., might be single-peaked consistent.

Definition 3.2. Let E = (C,V,P) be an election and k a positive integer. We say that the profile P
is k-candidate deletion single-peaked consistent if we can obtain a set C′ ⊆C by removing at most k
candidates from C such that the preference profile P[C′] is single-peaked consistent.

Let CD(P) denote the smallest k such that P is k-candidate deletion single-peaked consistent.
Note that CD(P)≤ |C|−2 always holds.

k-Local Candidate Deletion

Personal friendships or hatreds between voters and candidates could move candidates up or down in
a vote. These personal relationships cannot be reflected in a global axis. To eliminate the influence
of personal relationships to some candidates we define a local version of the previous notion. This
notion can also deal with the possibility that the least favourite candidates might be ranked without
special consideration or even randomly.

We first have to define partial domains and partial profiles.

Definition 3.3. Let C be a set of candidates and A an axis over C. A preference relation � over a
candidate set C′ ⊂C is called a partial vote. It is said to be single-peaked with respect to A if it is
single-peaked with respect to A[C′]. A partial preference profile consists of partial votes. It is called
single-peaked consistent if there exists an axis A such that its partial votes are single-peaked with
respect to A.

Definition 3.4. Let E = (C,V,P) be an election and k a positive integer. We say that the profile P
is k-local candidate deletion single-peaked consistent if by removing at most k candidates from each
vote in V we obtain a partial preference profile P ′ that is single-peaked consistent.

Let LCD(P) denote the smallest k such that P is k-local candidate deletion single-peaked
consistent. Note that LCD(P)≤ |C|−2 always holds.

k-Additional Axes

Another suggestion in [ELÖ08] is to consider the minimum number of axes such that each prefer-
ence relation of the profile is single-peaked with respect to at least one of these axes. This notion is
particularly useful if each candidate represents opinions on several issues (as it is the case in political
elections). A voter’s ranking of the candidates would then depend on which issue is considered most
important by the voter and consequently each issue might give rise to its own corresponding axis.

Definition 3.5. Let E = (C,V,P) be an election and k a positive integer. We say that the profile
P is k-additional axes single-peaked consistent if there is a partition V1, . . . ,Vk+1 of V such that the
corresponding preference profiles P1, . . . ,Pk+1 are single-peaked consistent.

Let AA(P) denote the smallest k such that P is k-additional axes single-peaked consistent.
Note that AA(P) < min

(
|V |, |C|!2

)
always holds. This is because the number of distinct votes is

trivially bounded by |V |. Furthermore, AA(P) is bounded by |C|!2 since at most |C|! distinct votes
exist and each vote and its reverse are single-peaked with respect to the same axes.



k-Global Swaps

There is a second method of dealing with candidates that are “not placed correctly” according to an
axis A. Instead of deleting them from either the candidate set C or from a vote, we could try to move
them to the right position. We do this by performing a sequence of swaps of consecutive candidates.
For example, to get from vote abcd to vote adbc, we first have to swap candidates c and d, and then
we have to swap b and d. Since this changes the votes in a more subtle way, this can be considered
a less obtrusive notion than k-(Local) Candidate Deletion.

Definition 3.6. Let E = (C,V,P) be an election and k a positive integer. We say that the profile P
is k-global swaps single-peaked consistent if P can be made single-peaked by performing at most
k swaps in the profile. (Note that these swaps can be performed wherever we want – we can have k
swaps in only one vote, or one swap each in k votes.)

Let GS(P) denote the smallest k such that P is k-global swaps single-peaked consistent. Note
that GS(P) ≤

(|C|
2

)
· |V | always holds since rearranging a total order in order to obtain any other

total order requires at most
(|C|

2

)
swaps.

k-Local Swaps

We can also consider a “local budget” for swaps, i.e., we allow up to k swaps per vote. This distance
measure has been introduced in [FHH11] as Dodgsonk.

Definition 3.7. Let E = (C,V,P) be an election and k a positive integer. We say that the profile P
is k-local swaps single-peaked consistent if P can be made single-peaked consistent by performing
no more than k swaps per vote.

Let LS(P) denote the smallest k such that P is k-local swaps single-peaked consistent. Note
that LS(P)≤

(|C|
2

)
always holds.

k-Candidate Partition

Our last nearly single-peaked formalism is the candidate analogon of k-additional axes. In this
case we partition the set of candidates into subsets such that all of the restricted profiles are single-
peaked consistent. This notion is useful in the following situation. Each candidate has an opinion on
a controversial Yes/No-issue. Depending on their own preference voters will always rank all Yes-
candidates before or after all No-candidates. It might be that when considering only the Yes- respec-
tively No-candidates, the election is single-peaked. Therefore, if we acknowledge the importance
of this Yes/No-issue and partition the candidates accordingly, we may obtain two single-peaked
elections.

Definition 3.8. Let E = (C,V,P) be an election and k a positive integer. We say that the profile P
is k-candidate partition single-peaked consistent if the set of candidates C can be partitioned into
at most k disjoint sets C1, . . . ,Ck with C1∪ . . .∪Ck =C such that the profiles P[C1], . . . ,P[Ck] are
single-peaked consistent.

Let CP(P) denote the smallest k such that P is k-candidate partition single-peaked consistent.
Note that CP(P)≤

⌈
|C|
2

⌉
always holds.

Decision Problems

We now introduce the seven problems we will study. We define the following problem for X ∈
{Maverick, Candidate Deletion, Local Candidate Deletion, Additional Axes, Global Swaps, Local
Swaps, Candidate Partition}.



X SINGLE-PEAKED CONSISTENCY

Given: An election E = (C,V,P) and a positive integer k.
Question: Is P k-X single-peaked consistent?

4 Results

4.1 Basic Results about Single-Peaked Profiles
We start with a simple observation which we will use in the proof of Theorem 4.6.

Lemma 4.1. Let P be a preference profile containing the preference relation �1: c1 . . .cn and its
reverse �2: cn . . .c1. Then P is either single-peaked with respect to the axis c1 < · · · < cn (and its
reverse) or it is not single-peaked at all.

Proof. Since the vote �1 ranks cn last while the vote �2 ranks c1 last, these candidates have to
be at the left-most and right-most position on any compatible axis. Note that c1 is the peak in �1.
Hence this already determines the position of all other candidates. Consequently only two axes are
possible: c1 < · · ·< cn and cn < · · ·< c1. Since any preference profile is single-peaked with respect
to c1 < · · ·< cn if and only if it is single-peaked with respect to cn < .. . < c1, we can focus without
loss of generality on the former. q

Lemma 4.2 provides an alternative characterization of single-peaked consistency.

Lemma 4.2. Given an election (C,V,P), the profile P is not single-peaked consistent if and only
if for all axes A there is some voter v ∈ V and three candidates ci,c j,ck ∈C such that ci > c j > ck
on axis A, and ci �v c j holds as well as ck �v c j.

The following observation says that any subelection, i.e., an election with the same voters over
a subset of the candidate set, of a single-peaked election is also single-peaked.

Lemma 4.3. Let (C,V,P) be a given election and C′ ⊆C. If P is single-peaked consistent then
also P[C′] is single-peaked consistent.

In the constructions in our main results we will have to cascade two or more preference profiles.
The following definition captures this notion.

Definition 4.4. Let (C1,V,P1) and (C2,V,P2) be two elections with C1∩C2 = /0. Furthermore, let
P1 = (�′1, . . . ,�′n) and P2 = (�′′1 , . . . ,�′′n). We define P1 �P2 = (�1, . . . ,�n), where for any
1≤ i≤ n the linear order �i is defined by

c�i c′ iff (c,c′ ∈C1 and c�′i c′) or (c,c′ ∈C2 and c�′′i c′) or (c ∈C1 and c′ ∈C2).

Note that P1 �P2 is always a preference profile over C1∪C2.

Lemma 4.5. Let (C1,V,P1) and (C2,V,P2) be two elections with C1∩C2 = /0. Assume that

• P1 and P2 are single-peaked consistent with respect to the axes A1 and A2, respectively.

• The preference relations in P2 have at most 2 peaks.

• These (two) peaks are adjacent on the axis A2.

Then P1 �P2 is single-peaked.

Proof. We are going to construct an axis A in a way that P1 �P2 is single-peaked with respect
to A. First we split A2 in two parts A′2 and A′′2 . If P2 contains two peaks (which have to be adjacent),
we split A2 in between these two peaks. If P2 contains only one peaks, we split A2 left of the
peak (this is arbitrary). The new axis A is A′2 followed by A1 and then A′′2 , i.e., A′2 > A1 > A′′2 . The
correctness proof of this construction is straight-forward. q



4.2 Relations between Notions of Nearly Single-Peakedness
Theorem 4.6 shows several inequalities that hold for the distance measures under consideration. We
hereby show how these measures relate to each other. Notice that these inequalities do not have an
immediate impact for a classical complexity analysis such as in Section 4.3.

Theorem 4.6. Let P be a preference profile. Then the following inequalities hold:

(1) LS(P)≤ GS(P). (4) LCD(P)≤ LS(P). (7) CP(P)≤CD(P)+1.
(2) LCD(P)≤CD(P). (5) M(P)≤ GS(P). (8) CP(P)≤ LS(P)+1.
(3) CD(P)≤ GS(P). (6) AA(P)≤M(P).

This list is complete in the following sense: Inequalities that are not listed here and that do not follow
from transitivity do not hold in general. The resulting partial order with respect to ≤ is displayed in
Figure 1 as a Hasse diagram.

Proof. Inequalities 1 and 2 are immediate consequences from the definitions since k-LS allows
more swaps than k-GS and k-LCD allows more candidate deletions than k-CD. Inequalities 3 and 4
are due to the fact that swapping two candidates in a vote is at most as effective as removing one
of these candidates. Similarly, for Inequality 5 observe that removing the corresponding voter is
at least as effective as swapping two candidates in the vote. Concerning Inequality 6 observe that
instead of deleting a voter we can always add an additional axis for this voter. Inequality 7 follows
from the fact that putting each deleted candidate in its own partition leads to single-peakedness if
deleting these candidates does.

In order to show Inequality 8 let P be k-local swaps single-peaked consistent. This means that
there exists an axis A such that after performing at most k swaps per voter, P becomes single-peaked
with respect to A. Without loss of generality assume that the axis A is c1 < c2 < .. . < cn. We now
partition the candidates in k+1 sets S0, . . . ,Sk. This is done by putting the i-th smallest element of
A into the (i modulo k+1)-th set. Since we assume that A is c1 < c2 < .. . < cn, we can equivalently
say that ci is put into the (i modulo k + 1)-th set, i.e., the c1 in S1, the c2 in S2, the ck in Sk and
ck+1 in S0. Let S ∈ {S0, . . . ,Sk}. Towards a contradiction assume that P[S] is not single-peaked
with respect to A[S]. By Lemma 4.2 there exists some voter v ∈V and three candidates ci,c j,ck ∈C
such that ci < c j < ck on axis A[S] (or equivalently i < j < k), ci �v c j and ck �v c j. On axis A
the distance between ci and c j respectively c j and ck is at least k + 1, i.e., at least k elements lie
in between them. We know that at most k swaps in �v can make this profile single-peaked with
respect to A. Let �′v denote this swapped vote. Necessarily these swaps have to either cause that
c j �′v c j−1 �′v . . .�′v ci+1 �′v ci holds or that c j �′v c j+1 �′v . . .�′v ck−1 �′v ck holds in�′v (depending
whether the peak of �′v is right or left of c j). Let us focus on the case that the swaps ensure that
c j �′v c j−1 �′v . . . �′v ci+1 �′v ci – the other case is analogous. For �v, contrary to �′v, it holds that
ci�v c j. Hence these swaps have to cause that c j �′v ci holds. In addition, at least k elements, namely
ci+1, . . . ,c j−1, have to be in between them. This requires at least k+1 swaps which contradicts the

GS

CD

CP

M

AA

LS

LCD

GS
M
CD
LS
AA
CP
LCD

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Global Swaps
Maverick
Candidate Deletion
Local Swaps
Additional Axes
Candidate Partition
Local Candidate Deletion

Figure 1: Hasse diagram of the partial order described in Theorem 4.6.



fact that at most k swaps suffice. Therefore for all partition sets S, P[S] is single-peaked consistent
and CP(P)≤ LS(P)+1.

It remains to show that these are indeed all inequalities. This can be done by providing coun-
terexamples for each remaining case. q

4.3 Complexity of Nearly Single-Peaked Consistency
Let us first introduce a lemma which we will use in the proofs of the theorems below.

Lemma 4.7. We are given a set of candidates C = {a,b,c,d} and three preference relations �v, �e
and �ne, where the candidates are ranked as follows:

• a�v c�v b�v d,

• c�e b�e d �e a and

• d �ne c�ne b�ne a.

Then the preference profile (�v,�e) is single-peaked with respect to the axis a > c > b > d and
(�e,�ne) is single-peaked with respect to the axis d > c > b > a. The profile (�v,�ne) is not
single-peaked consistent.

We start with maverick single-peaked consistency where we show NP-hardness via a reduction
from the clique problem, one of the standard NP-complete problems (see, e.g., [GJ79]).

Theorem 4.8. MAVERICK SINGLE-PEAKED CONSISTENCY is NP-complete.

Proof. To show hardness we reduce from CLIQUE. Let G = (VG,EG) be the graph in which we
look for a clique of size s. Furthermore, let VG = {v1, . . . ,vn} be the set of vertices and EG the
set of edges. Each vertex vi has four corresponding candidates c1

i , . . . ,c
4
i . We consequently have

C = {c1
1, . . . ,c

4
1,c

1
2, . . . ,c

4
2, . . . ,c

1
n, . . . ,c

4
n}. The voters directly correspond to vertices. Therefore we

define, by slight abuse of notation, V = {v1, . . . ,vn}.
In order to define the preference relations we introduce three functions creating partial votes. In

the following definition let a,b,c,d ∈C.

fv(a,b,c,d) = a� c� b� d

fe(a,b,c,d) = c� b� d � a

fne(a,b,c,d) = d � c� b� a

If we consider fv, fe and fne as preference relations then observe that by Lemma 4.7 ( fv, fe) and
( fe, fne) are single-peaked consistent but ( fv, fne) is not.

Next we define a mapping p(i, j) to a total order over the candidates {c1
j , . . . ,c

4
j}.

p(i, j) =


fv(c1

j ,c
2
j ,c

3
j ,c

4
j) if i = j

fe(c1
j ,c

2
j ,c

3
j ,c

4
j) if {i, j} ∈ EG

fne(c1
j ,c

2
j ,c

3
j ,c

4
j) if {i, j} /∈ EG

The intuition behind function p(i, j) is to encode a row of the adjacency matrix of G as a vote
in the preference profile P . To this end, we put in “cell” (i, j) the result of fe if there is an edge
between i and j. In case there is no edge between i and j we put the result of fne in cell (i, j). In the
special case i = j (we are in the diagonal of the matrix) we put the result of fv in the cell.



Let the partial profiles representing the columns of the adjacency matrix be defined as P j =
(p(1, j), . . . , p(n, j)), for 1 ≤ j ≤ n. We are now going to define the preference profile P = (�1
, . . . ,�n) by

P = P1 �P2 � . . . �Pn.

To conclude the construction let E = (C,V,P) and k = n− s, i.e., we are allowed to delete k
mavericks from E in order to obtain a single-peaked profile. The intention behind the construction
is that the voters in a single-peaked profile will correspond to a clique. We claim that G has a clique
of cardinality s if and only if it is possible to remove k voters from P in order to make the resulting
preference profile single-peaked consistent.

“⇒” Assume that there is a clique I = {vi1 , . . . ,vis} with |I| = s. Let P ′ = (�i1 , . . . ,�is). By
that we keep only those voters whose corresponding vertices are contained in the clique I. Observe
that the election E ′ = (C, I,P ′) can be obtained by deleting k = n− s mavericks from the election
E, |V \ I| = k. It remains to show that E ′ is indeed single-peaked consistent. Remember that we
denoted the preference relations in the j-th “column” of the profile by P j. By P ′

j we denote the
j-th “column” of a profile considering only the voters from P ′. Since I is a clique, for each x,y ∈ I,
x 6= y, there is an edge {x,y} ∈ EG. Thus the profile cannot contain an instantiation of fv and of fne
in the same column. By Lemma 4.7, all profiles P j with 1≤ j ≤ n are single-peaked consistent. In
order to be able to apply Lemma 4.5, all conditions have to be checked. First, notice that the profiles
P ′

j and P ′
j′ , for 1 ≤ j < j′ ≤ n, do not share any candidates and are single-peaked consistent.

Furthermore, each of the profiles has at most two peaks. Each column contains either instantiations
of fv and fe or instantiations of fe and fne. Otherwise it would not be single-peaked consistent. But
then there are only two top-ranked candidates, i.e., either the candidates top-ranked by fv and fe, or
the candidates top-ranked by fe and fne. Finally, the two top-ranked candidates of P ′

j have to be
adjacent on the axis which gives single-peaked consistency. Consider again Lemma 4.7. For ( fv, fe)
the top-ranked candidates a and c are adjacent on the axis a> c> b> d. The same holds for ( fe, fne)
with axis d > c > b > a and c, d as top-ranked candidates. Since all conditions are fulfilled, we can
iteratively apply Lemma 4.5. Therefore, P ′

1 �P ′
2,(P

′
1 �P ′

2) �P ′
3, . . . ,(P

′
1 � . . .) �P ′

n and
hence also P ′ are single-peaked consistent.

“⇐” Assume that E ′ = (C,V ′,P ′) is an election that has been obtained from E by deleting k
voters such that P ′ is single-peaked. Consequently |V ′|= s. Let V ′ = {vi1 , . . . ,vis} and P ′ = (�i1
, . . . ,�is).

We claim that V ′ is a clique in G. By Lemma 4.3 we know that each of the n columns
(P ′

1, . . . ,P
′
n) of P ′ is single-peaked consistent. Then, by Lemma 4.7, each column must not con-

tain an instance of fv together with an instance of fne. (Otherwise the respective column would not
be single-peaked consistent!) Observe that by construction each vote (in P ′) contains an instance
of fv in some column. But then each vertex must be adjacent to all other vertices – in other words
V ′ is a clique. q

We now turn to additional axes single-peaked consistency. Here we make use of a similar con-
struction as presented in Theorem 4.8 with the difference that we now show NP-hardness via a
reduction from the partition into cliques problem, which is also one of the standard NP-complete
problems (see, e.g., [GJ79]).

Theorem 4.9. ADDITIONAL AXES SINGLE-PEAKED CONSISTENCY is NP-complete.

Proof. Hardness is shown by a reduction from PARTITION INTO CLIQUES. For the reduction we
use the same transformation as presented in the proof of Theorem 4.8 to obtain an election. Then
we set k = s−1, i.e., we are searching for a partition of the voters into s disjoint sets such that each
of the partitions is single-peaked consistent. Due to the one-to-one correspondence between voters
and vertices we can use the partition of the vertices to obtain a partition of the voters and vice versa.
With arguments similar to the proof of Theorem 4.8 one can show that a set of vertices is a clique if
and only if the corresponding profile is single-peaked consistent. q



In the proofs of our last two results, we will provide reductions from the NP-complete problem
MINIMUM RADIUS, which was shown to be NP-complete in [FL97] and is defined as follows:

MINIMUM RADIUS

Given: A set of strings S⊆ {0,1}n and a positive integer s.
Question: Has S a radius of at most s, i.e., is there a string α ∈ {0,1}n such that each string in S has

a Hamming distance of at most s to α?

Theorem 4.10. LOCAL CANDIDATE DELETION SINGLE-PEAKED CONSISTENCY is NP-
complete.

Proof. A MINIMUM RADIUS instance is given by S ⊆ {0,1}n, the set of binary strings, and
a positive integer s. Given a string β , let β (k) denote the bit value at the k-th position in
β . We are going to construct an LCD SINGLE-PEAKED CONSISTENCY instance. Each string
in S = {β1, . . . ,βm} will correspond to a voter. Each bit of the strings corresponds to two
candidates. In addition, we have 2 · m · s + 2 extra candidates. Consequently, we have C =
{c1

1,c
2
1,c

1
2,c

2
2, . . . ,c

1
n,c

2
n,c
′
1, . . . ,c

′
ms+1,c

′′
1 , . . . ,c

′′
ms+1}.

We define the preference profile with the help of two functions creating total orders.

f0(a,b) = a� b f1(a,b) = b� a

The vote �k, for each k ∈ {1, . . . ,m}, is of the form

c′1 . . . c′ms+1 fβk(1)(c
1
1,c

2
1) fβk(2)(c

1
2,c

2
2) . . . fβk(n)(c

1
n,c

2
n) c′′1 . . . c′′ms+1.

Furthermore, let �r
k, 1 ≤ k ≤ m, denote the reverse order of �k. The preference profile P is now

defined as (�1, . . . ,�n,�r
1, . . . ,�r

n). We claim that (V,C,P) is s-LCD single-peaked consistent if
and only if S has a radius of at most s.

“⇐” Suppose that S has a radius of at most s, i.e., there is a string α ∈ {0,1}n with Hamming
distance at most s to each β ∈ S. We consider the following axis A:

c′1 > .. . > c′ms+1 > fα(1)(c
1
1,c

2
1)> fα(2)(c

1
2,c

2
2)> .. . fα(n)(c

1
n,c

2
n)> c′′1 > .. . > c′′ms+1.

We claim that P is single-peaked with respect to A after deleting at most s candidates in each vote.
The deletions for vote �k, k ∈ {1, . . . ,m}, are the following: We delete candidate c1

i in �k if and
only if α(i) 6= βk(i). The deletions in�r

k are exactly the same as in�k. These are at most s deletions
since the Hamming distance between α and every β ∈ S is at most s. After these deletions all votes
are either subsequences of A or its reverse. Hence we obtain a single-peaked consistent profile.

“⇒” Let P ′ be the partial, single-peaked consistent profile that was obtained by deleting at
most s candidates in each vote. First, note that some c′ ∈ {c′1, . . . ,c′ms+1} has not been deleted in
any vote since in total at most m · s many different candidates can be deleted. In the same way let
c′′ ∈ {c′′1 , . . . ,c′′ms+1} be a candidate that has not been deleted in any vote. Now let us consider the
profile P ′[{c′,c′′,c1

i ,c
2
i }] for any i ∈ {1, . . . ,n}. We claim that α , defined in the following way, has

a Hamming distance of at most s to all bitstrings in S.

α(k) =


0 if P ′ contains the vote c′ � c1

i � c2
i � c′′,

1 if P ′ contains the vote c′ � c2
i � c1

i � c′′,
1 otherwise.

First, observe that case 1 and 2 cannot occur at the same time since then P ′ would not be single-
peaked consistent. This is because P ′[{c′,c′′,c1

i ,c
2
i }] also contains the vote c′′ � . . . � c′, where

the dots indicate that c1
i and c2

i might also appear in this vote (between c′′ and c′). Furthermore, Let



β j ∈ S from some j ∈ {1, . . . ,n}. Note that if at any position i, β j(i) 6= α(i) then either c1
i or c2

i had
to be deleted in the vote � j. Hence the set {k ∈ {1, . . . ,m} | α(i) 6= β j(i)} cannot contain more than
s elements because this would require more than s candidate deletions in the corresponding vote� j.
Hereby we have shown that the Hamming distance of α and β j is at most s. q

Theorem 4.11. LOCAL SWAPS SINGLE-PEAKED CONSISTENCY is NP-complete.

Proof. We use the same construction as in the proof of Theorem 4.10. It holds that (V,C,P) is
s-LS single-peaked consistent if and only if S has a radius of at most s. This can be shown similarly
to the proof of Theorem 4.10 except that we swap elements instead of deleting them. q

5 Conclusions and Open Questions
We have investigated the problem of nearly single-peaked consistency. To this end, we have formally
defined two notions of nearly single-peakedness suggested by Escoffier, Lang, and Öztürk [ELÖ08].
Furthermore, we have introduced three new notions of nearly single-peakedness. We have drawn a
complete picture of the relations between all the notions of nearly single-peakedness discussed in
this paper. For four notions we have shown that deciding single-peaked consistency is NP-complete.
An obvious direction for future work is to pinpoint the complexity of the remaining three problems.
It is noteworthy in this regard that a distance measure has been studied very recently which admits a
polynomial time algorithm for nearly single-peaked consistency [EFS12].

NP-completeness, however, does not rule out the possibility of algorithms that perform well
in practice. One approach is to search for fixed-parameter algorithms. For example, it might be
that k-maverick single-peaked consistency can be decided by a fixed-parameter algorithm, i.e., an
algorithm with runtime f (k) · poly(n) for some computable function f . A second approach is the
development of approximation algorithms since nearly single-peaked consistency can also be seen
as an optimization problem.

Another interesting direction for future work is extending our models to manipulative behavior,
such as manipulation, control, and bribery. That is, assuming we have a nearly single-peaked elec-
torate according to one of our notions, how hard is a manipulative action under a certain voting rule
computationally? This line of work has already been started in [FHH11] for some distance measures.
Finally, there might be further useful and natural distance measures regarding single-peakedness to
be found.

Acknowledgments: We thank the anonymous reviewers for their helpful comments.
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