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Abstract

Participatory budgeting (PB) is a democratic process where
citizens jointly decide on how to allocate public funds to in-
divisible projects. In this work, we focus on PB processes
where citizens may provide additional money to projects they
want to see funded. We introduce a formal framework for this
kind of PB with donations. Our framework also allows for di-
versity constraints, meaning that each project belongs to one
or more types, and there are lower and upper bounds on the
number of projects of the same type that can be funded. We
propose three general classes of methods for aggregating the
citizens’ preferences in the presence of donations and ana-
lyze their axiomatic properties. Furthermore, we investigate
the computational complexity of determining the outcome of
a PB process with donations and of finding a citizen’s optimal
donation strategy.

1 Introduction
Participatory budgeting (PB) (Cabannes 2004; Shah 2007)
is a democratic tool that enables voters to directly decide
about budget spending. The general procedure of PB is that
voters are presented with a number of projects (e.g., building
a library or a park) and are asked to vote on these projects.
Then, a PB aggregation rule is used to select a subset of
projects—a so-called bundle—to be funded. This bundle has
to be feasible, which typically means that the total cost must
not exceed the available budget, and sometimes further ad-
here to fairness constraints.

In this paper, we propose a new addition to the partici-
patory budgeting process, namely adding donations. In our
model, voters can pledge donations to projects they support.
If such a project is funded, the donations are levied and only
the remaining cost is covered by the public budget. Conse-
quently, projects with donations can be funded with a re-
duced impact on the public budget. At first glance, allowing
donations in PB referenda brings major advantages: As the
total available budget increases, a larger overall satisfaction
is achievable. In addition, voters with an intense preference
for a project can support this project financially and thus
increase the chance of it being funded. However, allowing
donations also comes with a significant risk, namely that it
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may allow wealthier voters to donate more money than vot-
ers who are less well off and thus exert an unfairly large in-
fluence on the PB process. Therefore, one of the main goals
of the paper is to determine whether it is possible to include
donations in the PB process in a way that avoids this risk
while also achieving the advantages.

Our chosen model is based on PB with cardinal prefer-
ences (see also Peters, Pierczynski, and Skowron (2020)),
i.e., voters have numbers associated with projects that re-
flect their preferences. Cardinal preferences capture, e.g.,
settings with approval ballots (only 0 and 1 are used), set-
tings where voters can distribute points to projects (where
usually the sum of points is fixed and the same for all), and
settings where these numbers accurately correspond to the
utility of voters. Further, our model allows for diversity con-
straints (see also (Benabbou, Chakraborty, and Zick 2019)):
Each project belongs to one or more types (based on clas-
sifications such as “youth and education” or “transport and
mobility”) and for each type there is a minimum and max-
imum number of projects to be funded. This added gener-
ality allows us to model many interesting variations of PB,
for example city-wide referenda where districts have their
own “project quota”. Note that it is straightforward to extend
our model to include constraints with a minimum/maximum
amount of budget spent (see also Hershkowitz et al.).

As mentioned before, the largest concern of allowing do-
nations in PB is that voters who can afford to donate money
have additional power to influence the outcome. This may
undermine the acceptance of the process among the voters
who cannot afford to donate. Therefore, we consider the fol-
lowing desideratum as crucial for aggregation rules in PB
with donations.
D1 Donation-no-harm. Allowing donations should not

make any voter less satisfied (independent of whether
the voter donated herself).

A natural approach for handling donations in PB is to
reduce the cost of a project by the amount of donations
pledged to the project and then to apply a normal PB ag-
gregation rule. In this paper, we exemplarily examine eight
standard PB aggregation rules, four based on global opti-
mization and the remaining four on greedy optimization (see
Section 2 for the formal definitions; see also Aziz and Shah
2020). We show that this approach, however, violates D1
for all eight standard PB rules. Consequently, we propose
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two further natural approaches for adapting a PB rule R to
deal with donations. The first, Sequential-R, is to first run R
without considering donations and then runR again with the
money saved due to donations. If possible, the process is re-
peated. The second approach, Pareto-R, also first applies R
ignoring all donations. Based on the winning bundle A (i.e.,
a subset of winning projects), it selects a bundle with maxi-
mum social welfare among the bundles that Pareto-dominate
A, taking donations into account. Both Sequential-R and
Pareto-R satisfy D1 for all considered PB aggregation rules.

In order to gain a better understanding of the advantages
and disadvantages of different ways of adapting PB rules
for donations, we consider three more desiderata. All three
capture the idea that donating more money should not have
unintended, harmful consequences.
D2 Donation-project-monotonicity. Increasing the donation

from any voter to a winning project should not lead to
this project not winning anymore.

D3 Donation-welfare-monotonicity. Increasing the dona-
tion from any voter to a project should not lead to a
decrease of the social welfare (for a given welfare defi-
nition).

D4 Donation-voter-monotonicity. Donating to a project
should not make the voter who donates less satisfied
than not donating to this project (keeping her donations
to other projects unchanged).

We find that Pareto-R has especially nice axiomatic prop-
erties since it satisfies D1–3 (for social welfare notions com-
patible to the one used in the rule). However, it fails to satisfy
D4. In fact, this is essentially unavoidable since we show
that—under natural assumptions—D4 is impossible to sat-
isfy. All results hold independently of diversity constraints.

In addition to the axiomatic analysis, we study the com-
putational complexity questions that arise in our framework.
We focus on two computational problems.

The first problem, called R-WINNER, is to decide
whether a given bundle is a winner under R. We show
that winner determination for all global rules (i.e., based
on global optimization) is either strongly or weakly coNP-
hard. In the latter case, the problem can be solved in pseudo-
polynomial time for a constant number of types. The hard-
ness results also hold for their sequential and Pareto variants.
On the other hand, winner determination for all greedy rules
(i.e., based on greedy optimization) is polynomial-time solv-
able. The tractability result also holds for their sequential
variant. Therefore, the sequential variant of the greedy rules
can be seen as a reasonable alternative to their intractable
Pareto variant, as it satisfies D1 and D2 and offers better
computational properties.

As no reasonable PB rule can satisfy D4, voters generally
need to carefully consider which projects they want to
donate to. Therefore, we study a second problem, called
R-DONATION, which is to decide whether a given voter
can effectively spend a given amount of money so as to
achieve a higher utility (than with an initial donation).
While it is straightforward that R-DONATION is naturally
contained in ΣP

2, a complexity class from the second level
of the polynomial hierarchy (Papadimitriou 1994), the
presence of diversity constraints makes the problem indeed

ΣP
2-complete for all global rules and NP-complete for all

greedy rules, even under severe restrictions to the input
instances. We also show a somewhat unexpected result that
even if no diversity constraints are imposed, the problem
is at least beyond NP for global rules, while it remains
(weakly) NP-hard for some greedy rules and becomes
polynomial-time solvable for the remaining ones.

To sum up, our work provides a first axiomatic and com-
putational analysis of PB with donations and diversity con-
straints, in the form of both upper and lower bounds. We
discuss features and pitfalls of this idea, propose methods to
handle donations, and analyze their computational demands.
Table 1 summarizes our findings. Due to space limits, most
proofs are deferred to (Chen, Lackner, and Maly 2021).

Related work. Participatory budgeting has received sub-
stantial attention through the lens of (computational) social
choice in recent years, see e.g., (Fain, Goel, and Munagala
2016; Aziz, Lee, and Talmon 2018; Freeman et al. 2019;
Goel et al. 2019; Laruelle 2021); we refer to the survey by
Aziz and Shah (2020) for a detailed overview of this line
of research. However, donations have not been considered
in the indivisible PB model that we are concerned with in
this work. The allocation of donations has been studied in
a model related to divisible participatory budgeting albeit
without external budget (?).

In contrast, diversity constrains have been studied in PB
in the form of an upper bound on the amount of money spent
on each type (Jain et al. 2021) . However, to the best of our
knowledge, our work is the first to consider diversity con-
strains with both upper and lower bounds. Additionally, PB
with project interactions (Jain, Sornat, and Talmon 2020) is
another approach using project types to guarantee diverse
outcomes, albeit by changing the utility functions of the vot-
ers instead of the set of feasible outcomes. Finally, diversity
constraints have been studied in multi-winner voting (Bred-
ereck et al. 2018; Celis, Huang, and Vishnoi 2018; Yang and
Wang 2018; Bei et al. 2020), which can be considered a spe-
cial case of PB where projects have unit costs.

2 Preliminaries
Given a non-negative integer z, let [z] denote the set
{1, 2, . . . , z}. The input of our PB problem consists of a set
of m projects C = [m], a set of n voters V = [n] and a set
of types T = [t] along with the following extra information:
Each project j ∈ C has a cost cj ∈ N0, and a type vec-
tor τ j ∈ {0, 1}t, where τ j [z] = 1 means that project j has
type z; and τ j [z] = 0 otherwise. Each voter i ∈ V has (i)
a satisfaction function sati : C → N0, which models how
much she would like a project to be funded, and (ii) a con-
tribution vector bi ∈ Nm

0 such that for each project j ∈ C
the value bi[j] indicates how much money she is willing to
donate if project j should be selected.

In the following, we call the tuple P = (t, (cj)j∈[m],
(τ j)j∈[m], (sati)i∈[n], (bi)i∈[n]) a PB profile and call ev-
ery subset of projects a bundle. A PB instance I =
(P, B, `,u) contains, in addition to the PB profile P , a
set of constraints that a winning bundle has to satisfy.
These are determined by the budget B ∈ N0 and the
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PB Rule R D1 D2 D3 D4 R-WINNER R-DONATION

w/o diversity w. diversity w/o diversity w. diversity
Apply R?

� × 3 3 × w. coNP-c / coNP-c coNP-c w. NP-h + w. coNP-h / PNP
|| -h ΣP

2-c
Sequential-R?

� 3 3 × × w. coNP-h / coNP-c coNP-h w. NP-h + w. coNP-h / PNP
|| -h ΣP

2-c
Pareto-R?

� 3 3 3 × coNP-h coNP-h NP-h + coNP-h / PNP
|| -h ΣP

2-c

Apply G?
� × 3 × × in P in P w. NP-h / in P NP-c

Sequential-G?
� 3 3 × × in P in P w. NP-h / NP-c NP-c

Pareto-G?
� 3 3 3 × coNP-c coNP-c NP-h NP-h

Table 1: Desiderata for the PB rules and complexity results. R?
� and G?

� stand for rules based on global optimization and greedy
optimization, respectively (c.f. Section 2). “w.” stands for “weakly”.

diversity constraints specified by two vectors ` ∈ Nt
0

and u ∈ Nt
0 representing the lower and upper bound

on the number of projects funded per type. Throughout
the paper, we assume that P denotes a PB profile of
the form (t, (cj)j∈[m], (τ j)j∈[m], (sati)i∈[n], (bi)i∈[n]) and
I denotes a PB instance of the form (P, B, `,u).

We say that a bundle A ⊆ C is feasible for I if both the
budget and diversity constraints are fulfilled, i.e., if:

Budget constraint:
∑

j∈A max(0, cj −
∑

i∈V bi[j]) ≤ B.

Diversity constr.: `[z] ≤
∑

j∈A τ j [z] ≤ u[z], ∀z ∈ T .

We write C(I) to denote the set of all feasible bundles for I .
We say that A is exhaustive if adding any additional project
to A will violate the budget or diversity constraints.

Finally, we introduce some additional notions and nota-
tions. We say that voter i’s contribution vector bi is satisfac-
tion consistent if (i) for all j ∈ C with sati(j) = 0 it holds
that bi[j] = 0, and (ii) for all j, j′ ∈ C with bi[j] > bi[j

′]
it holds that sati(j) > sati(j

′) . Further, we say that a con-
tribution vector b′ is a j-variant of a contribution vector b if
for each j′ ∈ C with j′ 6= j it holds that b′[j′] = b[j′] (they
only differ for project j). Given a contribution vector b′v for
a voter v we use I−bv +b′v to denote the PB instance where
the contribution vector of v is replaced with b′v . For a PB in-
stance I with profile P , let P0 and I0 denote the profile and
instance derived from P and I where all donations are zero.

3 Aggregation Rules
We consider aggregation rules that select a winning bundle,
which is feasible and maximizes the satisfaction of the vot-
ers. To achieve this, we aggregate the satisfactions in two
steps. First, we aggregate the voters’ utility towards a bundle
of projects, and then we aggregate the utilities of all voters.
We consider two options for each step.

We call a function which lifts satisfaction functions for
single projects to bundles utility function, denoted as µ. We
consider two standard functions suited for cardinal prefer-
ences: summing the satisfaction of each project (additive) or
choosing the highest satisfaction of all projects (maximum)
in a bundle A.

µ+
i (I, A) :=

∑
j∈A

sati(j), µmax
i (I, A) := max

j∈A
sati(j).

We omit I from the function and write µi(A) instead if the
corresponding PB instance is clear from the context.

Next, given a PB instance I and a bundle A ⊂ C, a scor-
ing function score computes a number indicating the over-
all utilities of the voters towards A. We consider two types
of scoring functions: the sum scoring functions return the
sum of utilities of the voters towards a given bundle; the min
scoring functions return the minimum satisfaction. For each
? ∈ {max,+}, we define

score?Σ(I, A) :=
∑
i∈V

µ?
i (A), score?min(I, A) := min

i∈V
µ?
i (A).

We look at eight aggregation rules based on either global or
greedy optimization. Let ? ∈ {max,+} and � ∈ {Σ,min}.
Aggregation rules based on global optimization. Rule R?

�
selects a feasible bundle A with maximum score?�(I,A). As
convention, in case of multiple feasible bundles have maxi-
mum score, we select one according to an arbitrary but fixed
tie-breaking rule. DefineR := {R+

min,R
max
min ,R

+
Σ ,R

max
Σ }.

Aggregation rules based on greedy approaches. The
greedy rule G?

� proceeds iteratively by adding in each
step a project p to the winning bundle C ′ that maximizes
score?�(C

′ ∪ {p}) among the projects for which C ′ ∪ {p} is
feasible. In case of more than one project maximizing the
score in an iteration, we select one according to an arbi-
trary, fixed tie-breaking order. Observe that the greedy ap-
proach selects exhaustive bundles as long as the diversity
constraints contain no lower bounds. Indeed, the greedy ap-
proach may not even produce a feasible bundle in the pres-
ence of lower bounds. Therefore, we will always assume that
no lower bounds are specified when talking about the greedy
approach. Define G := {G+

min,G
max
min ,G

+
Σ ,G

max
Σ }.

Aggregation rules with donations. As the eight aggrega-
tion rules maximize a function over the set of feasible bun-
dles, they can simply handle donations via the definition of
budget constraints. Note that, using this approach, allowing
donation is equivalent to reducing the cost of the respective
project. However, as we will see, this simple way of han-
dling donations has some undesirable consequences. There-
fore we also propose to consider two other natural variants
for handling donations. Let R ∈ R ∪ G.

Sequential-R first applies R on I0, i.e., the instance with-
out donations. If afterwards some budget is left (due to do-
nations), R is applied again with the remaining budget but
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Algorithm 1: Sequential-R(I)

1 C ← [m];
2 while C changes in the previous iteration do
3 A0 ← R(P0(C), B, `,u);
4 C ← C \A0;
5 `← `−

∑
j∈A0

τ j ; u← u−
∑

j∈A0
τ j ;

6 B ← B −
∑

j∈A0

max(0, cj −
∑

j∈A0,i∈V
bi[j]);

7 return ([m] \ C) ∪R(P(C), B, `,u)

still without donations; this step is repeated as long as new
projects are added. In a last step, R is applied directly, thus
guaranteeing an exhaustive bundle.1

The second method is Pareto-R. Let A0 = R(I0). Now,
consider the set of bundles X consisting of A0 and all bun-
dles A∗ ∈ C(I) that µ-dominate A0. Here, a bundle X ⊆ C
µ-dominates another bundle Y ⊆ C if for each voter i ∈ V
it holds that µi(X) ≥ µi(Y ) and there exists a voter i ∈ V
with µi(X) > µi(Y ). Pareto-R chooses a bundle A ∈ X
with maximum score(A). Observe that Pareto-R can be ap-
plied to the greedy rules, but the resulting rule violates the
idea of greediness and avoiding global optimization. Indeed,
as we will see, Pareto-R negates the main advantage of the
greedy rules that the winner determination can be done in
polynomial time (Theorem 11).

Example 1. Consider the following PB instance I with 5
projects p1, . . . , p5, two voters, budget B = 5, and without
diversity constraints:

c(·) sat1 sat2 b1 b2

p1 3 5 5 0 1
p2 3 9 0 0 0
p3 2 1 2 0 0
p4 3 3 3 0 0
p5 1 1 1 0 0

We consider rule R+
Σ , and its sequential and Pareto vari-

ants. One can verify that the winner under R+
Σ is A1 =

{p1, p2} as it maximizes score+
Σ (= 19). Without donations,

the winner is A0 = {p1, p3}. Hence, Sequential-R+
Σ starts

by selecting A0. Then it runs R+
Σ on the instance created by

removing p1 and p3 from P0 with budget of 1 (the cost for p1

is reduced by 1 due to voter 2’s donation). Now, {p5} is the
winner (for R+

Σ), leaving 0 budget for the next round. Hence
the final winning bundle is A2 = {p1, p3, p5}.

Pareto-R+
Σ maximizes score+

Σ among the projects which
µ+-dominate A0. While A1 has a higher score than
A0 it does not µ+-dominate A0 since voter 2 is worse
off (µ+

2 (A1) = 5 < 7 = µ+
2 (A0)). Indeed, A3 = {p1, p4}

and A2 are the only feasible bundles which µ+-dominate
A0. Among those A3 has the highest score and is hence the
winner under Pareto-R+

Σ .

1This step is necessary as some remaining projects may be un-
affordable without donations.

4 Axioms Regarding Donations
In this section, we axiomatically analyze the different meth-
ods for handling donations. We start with a property that
we view as crucial for the acceptability of donations in PB,
namely that no voter may end up less satisfied with the out-
come than in a process without donations.
Definition 1 (µ̂-donation-no-harm). An aggregation rule R
satisfies µ̂-donation-no-harm if for each PB instance I and
each voter x it holds that µ̂x(R(I)) ≥ µ̂x(R(I0)).

If a rule R is based on a utility function µ, then that R
satisfies donation-no-harm means it satisfies µ-donation-no-
harm. We will use the same shorthand for the other axioms.
It turns out that the naive approach of just reducing the costs
of the projects does not guarantee this crucial property.
Theorem 1. All R ∈ R ∪ G fail donation-no-harm, even if
there are no diversity constraints and only satisfaction con-
sistent donations are allowed.

Proof sketch. To show the statement, consider the follow-
ing PB instance I with three voters 1, 2, 3 and three
projects p1, p2, p3. The budget B is 5, and there are neither
donations nor diversity constraints. The costs of the projects,
and the preferences of the voters are as follows:

c(·) sat1 sat2 sat3

p1 2 6 2 2
p2 4 1 4 4
p3 3 0 5 3

There are two feasible and exhaustive bundles A1 =
{p1, p3} and A2 = {p2}. One can verify that A1 is the win-
ner for every R ∈ R ∪ G. Now, if voter 3 donates one unit
to p2 then A3 = {p1, p2} becomes feasible. Indeed, A3 is
the unique winner under every R ∈ R ∪ G. One can verify
that this is a worse result for voter 2 under µ+ and µmax.

It is straightforward to see that Pareto-R and Sequential-
R satisfy donation-no-harm.
Proposition 2. For each R, Pareto-R satisfies µ̂-donation-
no-harm, where µ̂ is used for the µ̂-domination, and
Sequential-R satisfies µ̂-donation-no-harm for all mono-
tonic utility function µ̂ (i.e., for allA ⊆ B and for all voters i
it holds that µ̂i(A) ≤ µ̂i(B)).

While donation-no-harm guarantees that there is no incen-
tive for any voter to reject the inclusion of donations in the
PB process, it would also be desirable to incentivize voters
to donate. Clearly, it is in general not possible to guarantee
every voter that donating money will increase his satisfac-
tion. However, we would like to ensure that donating money
has no unintended, harmful consequences. First, we look at
unintended consequences for projects:
Definition 2 (donation-project-monotonicity). An aggrega-
tion rule R satisfies donation-project-monotonicity if for
each PB instance I , each voter x, and each donation b′x
which is a j-variant of bx with bx[j] < b′x[j] it holds that
if j ∈ R(I), then j ∈ R(I − bx + b′x).

Increasing the donation for a project j only makes new
bundles available that all include j and has no effect on the
other bundles. Therefore, the following holds:

9326



Proposition 3. R, Sequential-R, and Pareto-R satisfy
donation-project-monotonicity for all R ∈ R ∪ G.

Next, we consider the overall satisfaction of the voters.
Definition 3 (score-donation-welfare-monotonicity).
An aggregation rule R satisfies score-donation-
welfare-monotonicity if for each PB instance I , each
voter x, and each contribution vector b′x which is
a j-variant of bx with bx[j] < b′x[j] it holds that
score(I,R(I)) ≤ score(I ′, R(I ′)), where I ′ = I−bx +b′x.

As before, we omit score, if it is clear from the context. All
rules based on global optimization and their Pareto variants
satisfy donation-welfare-monotonicity, as increasing the do-
nation only increases the set of feasible bundles.
Proposition 4. R and Pareto-R satisfy donation-welfare-
monotonicity for all R ∈ R.

This leaves Sequential-R and the greedy rules, which do
not satisfy donation-welfare-monotonicity.
Proposition 5. For all R ∈ R and G ∈ G, Sequential-R, G,
and Sequential-G fail donation-welfare-monotonicity, even
if there are no diversity constraints and only satisfaction-
consistent donations are allowed.

The final property asserts that a voter should not be worse
off if she decides to donate more money to a project. We
consider the slightly weaker requirement that a voter should
not be worse off if she donates money for a project than if
she donates no money for that project.
Definition 4 (µ̂-donation-voter-monotonicity). An aggrega-
tion rule R satisfies µ̂-donation-voter-monotonicity if for
each PB instance I , each voter x, and each donation b′x
which is a j-variant of bx such that b′x[j] = 0 it holds that

µ̂x(R(I)) ≥ µ̂x(R(I − bx + b′x)).

Unfortunately, this property is essentially impossible to
satisfy by an exhaustive rule. To be more precise, an ex-
haustive rule which satisfies a very weak additional axiom
cannot satisfy µ̂-donation-voter-monotonicity for nearly all
utility functions µ̂. To show our result in its full general-
ity, we need to introduce two rather technical axioms, weak
continuity and weak responsiveness. Both are weak forms
of well-known axioms from the voting (Zwicker 2016) resp.
fair allocation (Bouveret et al. 2016) literature and essen-
tially state that continuity and responsiveness have to be sat-
isfied for some particularly clear-cut cases. First, we define
weak continuity, which is satisfied by all considered rules.
Definition 5. An aggregation rule R satisfies weak continu-
ity if for each PB instance I and for each project j ∈ [m]
the following holds: If sati(j) > 0 for all i ∈ [n] and there
exists a feasible bundle that contains j, then there are values
c0 and k0 such that j is a winner if one adds k ≥ k0 voters
i∗1, . . . , i

∗
k that do not donate any money and have satisfac-

tion functions such that for all ` ∈ [k] we have sati∗` (j) ≥ c0
and sati∗` (j∗) = 0 for all projects j∗ 6= j.
Proposition 6. R, Sequential-R and Pareto-R satisfy weak
continuity for each R ∈ R ∪ G.

Before we define weak responsiveness, we recall that re-
sponsiveness requires that for all bundlesA and projects x ∈

A and y 6∈ A with sat(x) < sat(y) we have µ(A) <
µ((A \ {x}) ∪ {y}). Weak responsiveness essentially states
that this has to hold at least for three satisfaction values and
(only) for some bundles of size two.
Definition 6. A utility function µ is weakly responsive if
there are values u1, u2 and u3 with u1 > 0 and u2 < u3

such that for all voters v and projects p1, p2 and p3 with
satv(p1) = u1, satv(p2) = u2 and satv(p3) = u3, it holds
that µv({p1, p2}) < µv({p1, p3}).

It is straightforward to see that µ+ and µmax are weakly
responsive, for example with u1 = 1, u2 = 2 and u3 = 3, as
are most natural utility functions. A notable exception is the
function µCC where µCC

v (A) = 1 if there is a project x ∈ A
such that satv(x) > 0 and µCC

v = 0 else. For dichoto-
mous preferences, this equals the satisfaction function that is
used in the well-known Chamberlin-Courant rule (Lang and
Xia 2016). Indeed, all considered aggregation rules satisfies
µCC-donation-voter-monotonicity if voters only donate for
projects which offer them positive satisfaction values.
Theorem 7. No exhaustive aggregation rule that satisfies
weak continuity can satisfy µ-donation-voter-monotonicity
for any weakly responsive utility function µ, even if we only
allow satisfaction consistent contributions and there are no
diversity constraints.

We note that exhaustiveness is indeed necessary. Con-
sider for example the following non-exhaustive rule R∗:
Let p1, . . . , pm be an enumeration of C such that
score+

Σ({pi}) > score+
Σ({pj}) implies i < j. Now, let k be

the largest value such that Ck = {p1, . . . , pk} is a feasible
bundle. Then, Ck is the winner under R∗. R∗ satisfies weak
continuity by the same argument as G+

Σ (see Proposition 6).
Moreover, increasing the donation to any project can only
increase the value k for which Ck is feasible. Therefore, R∗
satisfies µ-donation-voter-monotonicity for all monotonic
utility functions µ.

Finally, if we additionally assume that all voters only do-
nate to the projects which give them the highest satisfaction,
then Rmax

min and Rmax
Σ satisfy donation-voter-monotonicity.

5 Central Computational Problems
We consider two decision problems that arise in our frame-
work. The first one captures the complexity of applying an
aggregation method.
R-WINNER
Input: A PB instance I and a bundle A.
Question: Is A a (co-)winning bundle under R?
The second problem is concerned with the effective use

of donations from a voter’s perspective. This problem is par-
ticularly crucial in light of Theorem 7, which tells us that
voters need to carefully consider how to distribute their do-
nation for nearly every natural voting rule.
R-DONATION
Input: A PB instance I form projects C, a voter v, and
an integer δ ∈ N (voter v’s personal budget).
Question: ∃b′v ∈ Nm

0 with
∑

j∈C b
′
v[j] ≤ δ such that

µv(R(I ′)) > µv(R(I)), where I ′ := I − bv + b′v and
µ denotes the utility function underlying rule R?
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R-WINNER

First, we upper-bound the complexity of R-WINNER.

Theorem 8. R-WINNER is in coNP for each R ∈ R.

Next, we consider the rule R+
Σ . Since it generalizes the

famous knapsack algorithm, parts of the following results
are straightforward.

Theorem 9. R+
Σ -WINNER can be solved in O(n ·m+ (B+

1) · (m + 1)t+1 · t) time, and Sequential-R+
Σ -WINNER can

be solved in O(n ·m+ (B+ 1) · (m+ 1)2) time if there are
no diversity constraints. Even if there is only one voter and
no donations are provided, both problems are coNP-hard
for dichotomous preferences, and remain weakly coNP-hard
when diversity constraints are not present.

Pareto-R+
Σ -WINNER is already coNP-hard even for di-

chotomous preferences and without diversity constraints.

Hardness for rules other than R+
Σ is also quite straightfor-

ward as they generalize commonly used multiwinner rules.

Theorem 10. For each R ∈ {Rmax
min ,R

+
min,R

max
Σ } and their

sequential and Pareto variants, R-WINNER is coNP-hard
even for projects with unit costs, without diversity con-
straints or donations, and for dichotomous preferences.

Finally, winner determination is polynomial-time solvable
for all greedy rules and their sequential variants, but this
does not extend to the Pareto variants.

Theorem 11. For all ? ∈ {+,max} and � ∈ {min,Σ},
G?
�-WINNER and Sequential-G?

�-WINNER are polynomial-
time solvable, while Pareto-G?

�-WINNER is in coNP and at
least as hard as R?

�-WINNER. Pareto-G+
Σ -WINNER without

diversity constraints remains coNP-hard even for dichoto-
mous preferences.

R-DONATION

If diversity constraints are present, the picture is quite clear:
R-DONATION is ΣP

2-complete for all R ∈ R and their two
variants, while R-DONATION is NP-complete for all G ∈ G
and their sequential variants. Without diversity constraints,
the complexity results vary: For all aggregation rules R ∈ R
except R+

Σ , finding an optimal donation is as hard as the
complexity class PNP

|| (Papadimitriou 1994, Chapter 17.1),
which includes NP. For R+

Σ , it is both weakly NP-hard and
weakly coNP-hard. This implies, under a widely believed
complexity-theoretical assumption, that the problem is be-
yond NP. On the other hand, R-DONATION is polynomial
time solvable for Gmax

� and becomes NP-hard for its sequen-
tial variant while it remains weakly NP-hard for G+

� and all
sequential variants. It is NP-hard for the Pareto variant of all
greedy rules.

In the following, after locating the complexity upper
bound, we first consider the case with diversity constraints,
and then that without diversity constraints.

Theorem 12. R-DONATION, Sequential-R-DONATION,
and Pareto-R-DONATION are in ΣP

2 for each R ∈ R. G-
DONATION and Sequential-G-DONATION are in NP for
each G ∈ G.

With diversity constraints Using the power of diversity
constraints, we prove ΣP

2-hardness for all R ∈ R. That is,
finding an effective donation is hard for the complexity class
ΣP

2, whenever diversity constraints are involved. All reduc-
tions are from a SAT variant, which is proved to be ΣP

2-
complete by Chen, Ganian, and Hamm [2020b, Claim 1]
and originally used to prove that finding a diverse and stable
matching is ΣP

2-hard.
Theorem 13. R-DONATION is ΣP

2-hard for R ∈ R\{Rmax
min }

even for projects with unit costs, zero budget, and dichoto-
mous preferences. Rmax

min -DONATION is ΣP
2-hard even for

projects with unit costs, zero budget, and trichotomous pref-
erences. The same hardness holds for the sequential and
Pareto variants.

Next, we show that, in the presence of diversity upper
bounds, G-DONATION is NP-hard for all greedy rules G and
their sequential variants.
Theorem 14. G-DONATION and Sequential-G-DONATION
are NP-hard for all G ∈ G, even if the budget is zero.

With no diversity constraints In this case, we were not
able to show ΣP

2 -hardness. However, for most R ∈ R and
their two variants, we show that it is at least PNP

|| -hard. Be-
fore we present our results, we recall the following relations
among the complexity classes: (NP ∪ coNP) ⊆ PNP

|| ⊆ ΣP
2,

where all inclusions are generally assumed to be strict.
Theorem 15. R-DONATION without diversity constraints
becomes PNP

|| -hard for all R \ {R+
Σ} and its sequential and

Pareto variants. Hardness for Rmax
Σ and its two variants hold

even for dichotomous preferences.

Proof sketch. We show the hardness result for Rmax
Σ -

DONATION by reducing from a PNP
|| -complete problem

(Spakowski 2005, Theorem 3.2.6), called MAX-TRUE-
3SAT-COMPARE: Given two equal-sized sets X and Y
of Boolean variables and two equal-sized sets φ1(X) and
φ2(Y ) of clauses over X and Y , respectively, where each
clause contains at most 3 literals, and both φ1(X) and
φ2(Y ) are satisfiable, is “max-1(φ1) ≥ max-1(φ2)” true?
Herein, given a Boolean formula φ over a set Z of variables,
max-1(φ) denotes the maximum number of variables set to
true in a satisfying truth assignment for φ; if φ is not satisfi-
able, then max-1(φ) is undefined.

The idea of the reduction is to construct, from an in-
stance (φ1(X), φ2(Y )) of MAX-TRUE-3SAT-COMPARE
with |X| = |Y | = n̂ and |φ1| = |φ2| = m̂, an equiva-
lent instance of Rmax

Σ -DONATION with 2n̂ X-projects, 2n̂
Y -projects (each corresponding to a literal), n̂ auxiliary-
projects, and 3 special projects x0, y0, α0, where our tar-
get voter v can only gain satisfaction from x0. We define
the costs of the X- and Y -projects such that projects cor-
responding to positive literals cost less than projects cor-
responding to negative literals. Therefore, if more positive
projects are funded, then more money is left to select addi-
tional auxiliary-projects. The costs of the auxiliary-projects
are small in comparison to the other projects. This way, the
score of bundle A is linear in the number of positive X-
projects (resp. Y -projects) in A. Moreover, we define the
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budget, the donation bound, and the costs of x0 and y0 such
that any feasible bundle A with sufficiently large score sat-
isfies the following properties: (i) A contains either x0 or
y0. (ii) If A contains x0 (resp. y0), then it corresponds to
a valid truth assignment of φ1 (resp. φ2). Besides voter v,
we introduce a large number of additional voters to ensure
that any winning (and feasible) bundle must achieve a suffi-
ciently large score. Since voter v is only satisfied with x0, the
only way for her to improve her utility is to ensure that there
exists a winning (and feasible) bundle which includes x0.
In order to achieve this, she must donate money to projects
such that the number of positive X-projects is at least as
large as the number of positive Y -projects in any feasible
bundle including y0, i.e., max-1(φ1) ≥ max-1(φ2).

Formally, let (φ1(X), φ2(Y )) be an instance of MAX-
TRUE-3SAT-COMPARE with X = {x1, . . . , xn̂} and Y =
{y1, . . . , yn̂}, φ1 = {C1, . . . , Cm̂} and φ2 = {D1, . . .,
Dm̂}. To ease notation, define L := n̂ + 3 and K :=
2n̂ + 2m̂ + 4n̂2 + 4n̂. We create an instance of Rmax

Σ -
DONATION without diversity constraints as follows.

Besides the three distinguished projects x0, y0, α0, we
create the following projects: For each xi ∈ X (resp. yi ∈
Y ) create two X-projects xi and xi (resp. Y -projects yi and
yi). For each i ∈ [n̂], we create an auxiliary-project αi. The
costs of the projects are specified as follows:

xi xi yi yi αi x0 y0 α0

n̂+ 1 n̂+ 2 n̂+ 1 n̂+ 2 i 2n̂ n̂ B

The voters have dichotomous preferences: If they are sat-
isfied with a project, then they are satisfied with value one.
Our target voter v is only satisfied with x0. Additionally, we
create the following L · (2n̂+ 2m̂+ 4n̂2 + 4n̂) + n̂+ 5 =
L ·K + n̂+ 4 voters.
– For each xi ∈ X (resp. yi ∈ Y ), we create L voters xji

(resp. yji ), j ∈ [L], which are only satisfied with the
projects xi and xi (resp. yi and yi).

– For each clauseC` ∈ φ1 (resp.D` ∈ φ2), we createL vot-
ers cj` (resp. dj`), j ∈ [L], each of which is only satisfied
with the X-projects (resp. Y -projects) which correspond
to the literals contained in C` (resp. D`), and project α0.

– For each xi ∈ X , we create 2·L voters uji and uji , j ∈ [L].
Each uji (resp. uji ) is satisfied with the corresponding X-
project xi (resp. xi), and projects x0 and α0. Similarly, for
each yi ∈ Y , we introduce 2·L voters,wj

i andwj
i , j ∈ [L].

Each wj
i (resp. wj

i ) is satisfied with the corresponding Y -
projects yi (resp. yi), and projects y0 and α0. Finally, for
each lit ∈ X∪X and lit′ ∈ Y ∪Y , we create L connector-
voters who are only satisfied with projects lit, lit′, and α0.

– For each i ∈ [n̂], we create a voter ai, who is only satisfied
with the auxiliary-projects from {αn̂, αn̂−1 . . . , αn̂−i+1}.
We create one more voter a0 who is only satisfied with all
n̂ auxiliary-projects.

– Finally, we create three distinguished voters v1, v2, and
v3 such that v1 is only satisfied with y0 and α0, while v2

and v3 are only satisfied with α0.
Finally, to complete the construction, defineB := n̂(3n̂+

6) and δ := n̂, and let no voter donates any money initially.
Let I denote this PB instance. The proofs of the following

and of the remaining results are available in the full ver-
sion (Chen, Lackner, and Maly 2021): (1) the initial win-
ning bundle has score ≥ L · K + 3 and the initial utility
of v is zero, and (2) (φ1(X), φ2(Y )) and (I, δ) are equiv-
alent, i.e., φ1 admits a satisfying assignment σ1 such that
the number k1 of X-variables set to true is greater or equal
to max-1(φ2) iff. there exists a donation vector for v with
sum at most δ such that the bundle consisting of x0, αk1 , the
projects corresponding to σ1, and all Y -projects is a winner
after the donation.

We were not able to show PNP
|| -hardness for R+

Σ and its two
variants. However, we show that it is unlikely to be con-
tained in NP or coNP.
Theorem 16. For the case without diversity constraints,
R+

Σ -DONATION and Sequential-R+
Σ -DONATION are both

weakly NP-hard and weakly coNP-hard, while Pareto-R+
Σ -

DONATION becomes NP-hard and coNP-hard even for di-
chotomous preferences.

For the greedy rules, we can show that, in the absence of
diversity constraints, if a voter wants to ensure that a project
is in the winning bundle, she cannot do better than donating
all her available money to it. From this, it follows directly
that Gmax

� -DONATION can be solved in polynomial time.
Theorem 17. For the case without diversity constraints,
Gmax
� -DONATION for each � ∈ {Σ,min} can be solved in

polynomial time.
Interestingly, this does not carry over to the sequential and

Pareto variant of all greedy rules.
Theorem 18. For the case without diversity constraints,
Sequential-Gmax

� -DONATION and Pareto-G?
�-DONATION

remain NP-hard for each ? ∈ {+,max} and � ∈ {min,Σ}.
Hardness for Pareto-G?

Σ holds even for dichotomous prefer-
ences.
Theorem 19. For the case without diversity constraints,
G+
� -DONATION and Sequential-G+

� -DONATION remain
weakly NP-hard for each � ∈ {Σ,min} even if there is only
one voter and the budget is zero.

6 Discussion
To briefly summarize our findings, we conclude that Pareto-
R?
� is axiomatically the most promising implementation of

donations (among all exhaustive and weak-continuous rules)
in a PB process. If a computationally efficient rule is sought,
then we recommend the greedy-based Sequential-G?

� vari-
ants.

For future work, one could investigate whether drop-
ping exhaustiveness or weak continuity yields interesting
PB rules that satisfy more axiomatic properties compared
to the rules discussed in this paper. Secondly, some of our
hardness results are not yet tight. Moreover, a parameterized
complexity analysis could help to find effective algorithms
(e.g., with the number of voters as parameter). Recent work
(Peters, Pierczynski, and Skowron 2020; Hershkowitz et al.
2021) has considered proportionality in PB processes. Merg-
ing this line of research with our focus on donations could
yield particularly fair and versatile PB voting rules.
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