Computing Kemeny Rankings
From d-Euclidean Preferences

Thekla Hamm, Martin Lackner, and Anna Rapberger

TU Wien, Vienna, Austria

Abstract. Kemeny’s voting rule is a well-known and computationally
intractable rank aggregation method. In this work, we propose an algo-
rithm that finds an embeddable Kemeny ranking in d-Euclidean elec-
tions. This algorithm achieves a polynomial runtime (for a fixed di-
mension d) and thus demonstrates the algorithmic usefulness of the d-
FEuclidean restriction. We further investigate how well embeddable Ke-
meny rankings approximate optimal (unrestricted) Kemeny rankings.

1 Introduction

Rank aggregation is the problem of combining a collection of rankings into a
social “consensus” ranking, with applications ranging from multi-agent plan-
ning [23] and collaborative filtering [34] to internet search [5] [I8]. The classic
application of rank aggregation is voting and thus rank aggregation methods are
extensively studied in social choice theory, where rankings correspond to voters’
preferences. A prominent rank aggregation method is Kemeny’s voting rule, also
known as Kemeny-Young method. This method is based on the Kendall-tau dis-
tance between rankings and outputs a consensus ranking (or Kemeny ranking)
that minimizes the sum of distances to the input rankings.

Kemeny’s voting rule is of particular importance for two reasons: First, it is
the only rank aggregation method satisfying three desirable properties (neutral-
ity, consistency, and being a Condorcet method) [41]. Second, it is the maximum
likelihood estimator for the “correct” ranking if the input is viewed as noisy per-
ceptions of a ground truth (assuming a very natural noise model) [42]. However,
Kemeny’s rule has a main disadvantage: its computational complexity [7], 28]. In
particular, computing the Kemeny score is NP-hard even for four voters [18].

Due to the importance of Kemeny’s rule, much algorithmic research has been
conducted with the goal to overcome this computational barrier. The majority of
this work has focused on approximation algorithms, parameterized algorithms
and heuristical methods (see related work below). In this paper, we take an
approach that is widely used in computational social choice: to restrict the
input to a smaller preference domain [2I]. If the input rankings possess a fa-
vorable structure, it may be possible to circumvent hardness results that hold
in the general case. For Kemeny’s rule, this is the case if the input has a cer-
tain 1-dimensional structure; more specifically, Kemeny’s rule is polynomial-time
computable for single-peaked rankings [I1] and for rankings with bounded single-
peaked or single-crossing width [I5]. In contrast, Kemeny’s rule remains NP-hard



for preferences that are single-peaked on a circle [36] and, as very recently shown
in [25], for d-Euclidean preferences with d > 2. In fact, both preference domains
admit an interesting connection: In [40] it has been shown that preferences that
are single-peaked on a circle can capture specific 2-Euclidean preferences.

The d-Euclidean preference domain [10], [22] is a d-dimensional spatial model
based on the assumption that voters and candidates can be placed in R? and
a voter’s preference ranking is derived from the Euclidean distance between her
coordinates and the candidates—closer candidates being more preferable. This
model captures situations where voters’ preferences are mainly determined by
real-valued attributes of candidates (e.g., a political candidate may be placed in a
two-dimensional space with axes corresponding to her position on economic and
social issues, or a textbook might be judged on its focus on theory/applications
and on its complexity level). It is intuitively clear that a one-dimensional model
is too simplistic to capture most real-world situations, and more dimensions
greatly increase the applicability of this domain. However, as mentioned before,
it is not the case that simply restricting the input to d-Euclidean preferences
yields a computational advantage as the problem remains NP-hard [25].

The goal of our paper is to find an efficient algorithm for Kemeny’s vot-
ing rule given d-Euclidean preferences (for d > 2) by additionally imposing
reasonable restrictions on the output. We work under the assumption that an
embedding witnessing the d-Euclidean property is known and that the consensus
ranking (i.e., the output) has to be embeddable via the same embedding. The
embeddability of the consensus ranking is a sensible assumption as it extends the
explanation of the preference structure to the consensus ranking, i.e., if voters’
preferences can be understood as points in a d-dimensional space, then also the
output should be explainable via this space. Our main result is that this problem
can be solved in time in O(|C|*¢) for strict orders and O(|C|*7464+2) for weak
orders (with ties), i.e., it is solvable in polynomial time for a fixed dimension d.
This algorithm makes use of a correspondence between embeddable rankings and
faces of a hyperplane arrangement in which each hyperplane is equidistant to two
embedded candidates. The determination of an embeddable consensus ranking
is then performed on an appropriately constructed vertex- and edge-weighted
graph, which is extracted from the arrangement.

We further show that this algorithm can be adapted to an egalitarian variant
of the Kemeny problem, which minimizes the maximum Kendall-tau distance.
Finally, we study the restriction of requiring an embeddable consensus ranking in
more detail. We prove that an embeddable consensus ranking has at most twice
the Kemeny score of the optimal, unrestricted Kemeny ranking. In numerical
experiments, we show that the embeddable Kemeny ranking and the optimal
Kemeny ranking coincide in most small instances.

Related work. In addition to the results by Escoffier et al. [25] who showed NP-
hardness of Kemeny’s voting rule given d-Euclidean preferences for d > 2, the
work of Peters [35] on the recognition of d-Euclidean elections is of particular
importance to our problem. Peters shows that this problem is NP-hard for d > 2
[35] (it is even JR-complete). Thus, one cannot hope for a polynomial-time al-



gorithm for our problem if the embedding is removed from the input. Instead,
we assume that the embedding is either found in a preprocessing stage (with
sufficient time available) or is known due to understanding the origin of pref-
erences (which adhere to a d-dimensional geometry). In contrast, recognizing
1-Euclidean elections is possible in polynomial time [I7} 30].

As mentioned before, Kemeny’s rule has attracted much attention from an
algorithmic perspective: exponential-time search-based techniques [6] (14} [16], ap-
proximation algorithms [T, 29], parameterized algorithms [8, [I5], and heuristical
algorithm [2], [38]. As Kemeny’s voting rule is of practical importance, much work
has also been invested in runtime benchmarks [3].

2 Preliminaries

A weak order = over a set X is a complete (z = y or y = x for all z,y € X)
and transitive binary relation. We write x >~ y if > y but not y > z. Further,
we write x ~ y if x = y and y = x. A weak order > is a strict order if it has no
ties, i.e., if © # y then either x > y or y > x.

We define an election (C,V, (*=4)vecy) as a set of candidates C, a set of voters
V, and for each v € V, a weak order >, over the candidates called the preference
(order) of v. Whenever ¢ =, ¢/, we say that v prefers ¢ over ¢’

Let d be positive integer and let p : CUY — R? be an embedding in the
d-dimensional space. Further, let || - |4 denote the Euclidean norm in R?. We
say that a voter’s preference order =, for v € V on C is p-embeddable if for all
¢, € C,c = if and only if ||p(v) — p(e)|la < |lp(v) — p(¢)]|a. Generally for
a weak order = on C that do not coincide with a voter’s preference order, we
say = is p-embeddable if there is some x € R< such that for all ¢,¢ € C, ¢ = ¢
if and only if ||z — p(c)|la < ||z — p(¢)||a- An election (C,V, (=4)sey) is said to
be p-embeddable if =, for all v € V are p-embeddable. Finally, an election is
d-FEuclidean if it it is p-embeddable for some p.

We define the Kendall-tau distance of two weak orders =, >’ over C as

K(=,=") = Z d= »/(z,y), where
{z,y}cc
2 if(x>=yandy>"2z)or (y>zand x>"y)
dewi(z,y) =<1 if (x~yand z & y)or (x4 yandz~ y)
0 otherwise (i.e., = and >’ agree on the order of z and y).

Equivalently,

K(=>=)= [{{zy}CCll@=yry~"2)V(y=anrz ="y}
+H@ytCCl@zyrny-2)V(y ="z Az =y}
For strict orders > and >, this definition simplifies to the number of ordered

candidate pairs on which the two orders disagree, i.e., K(>=, ") = |{(z,y) € C? |
(x=yANy>="z)V(y=zAz>"y)}.



We can now define Kemeny’s voting rule and the corresponding consensus
rankings, which we refer to as optimal Kemeny rankings in the following.

Definition 1. Given an election (C,V,(xy)vev), a strict order = on C is an
optimal Kemeny ranking if there is no other strict order =' on C with

STK(,m) < K-z,

veVY veEV

i.e., an optimal Kemeny ranking minimizes the sum of Kendall-tau distances to
the preference orders. We refer to ), -\, K(=, =) as the Kemeny score of .

We note that Definition [I] could be adapted to define Kemeny rankings as
weak orders; this would not change our results.

From a computational viewpoint, Kemeny’s voting rule is captured by the
following NP-hard decision problem [7, [I8] 28]:

KEMENY SCORE
Instance: An election (C,V, (=4)sev) and an objective value z € N.
Question: Is there a strict order > on C such that - _, K(>,>,) <27

We furthermore consider an egalitarian variant which minimizes the maximal
dissatisfaction of each voter.

Definition 2. Given an election (C,V, (xy)vev), we say that a strict order -
on C is an egalitarian Kemeny ranking if there is no other strict order =' # =~
on C with max,cy K(>', =) < max,ey K(>-, =,).

Like for KEMENY SCORE, the corresponding decision problem EGALITARIAN
KEMENY SCORE, i.e., given (C,V, (>y)vev), 2 € N, decide whether there is a
strict order > on C such that max,cy K(>,>,) < z, is NP-hard even for four
voters which was independently proved by Biedl et al. [9] and Popov [37].

3 Embeddable Kemeny Rankings

The main focus of this paper is on the constrained setting of d-Euclidean elec-
tions, that is, we assume that the input is an embedding p as well as a p-
embeddable election. In addition, we require that the output (i.e., the Kemeny
ranking) is also p-embeddable.

Definition 3. Given an embedding p: CUV — R? and a p-embeddable election
(C,V, (=v)vev), a strict order = on C is a p-embeddable Kemeny ranking if >
1s p-embeddable and there is no other p-embeddable strict order =' on C such

that Zvev K(>/a iv) < ZUEV K(P, tv)

A p-embeddable egalitarian Kemeny ranking is defined analogously.
First we observe that a p-embeddable Kemeny ranking does not need to
coincide with any optimal Kemeny rankings for a given p-embeddable election.
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Ezxample 1. Consider the voting setting depicted in Figure (I} The preferences
of voter vy are given by co =1 ¢3 =1 ¢1 =1 ¢4, the preferences of voter vy are
€4 »9 C3 >2 Ca =2 1 and vg prefers ¢; >3 ¢4 =3 co =3 c3. The unique Kemeny
ranking is ¢4 > c3 = ¢3 > ¢1 (with a Kemeny score of 14) since K(>,>1) = 6,
K(-,>2) = 2, K(>,>3) = 6, and >, s K(~',>,,) > 14 for all ~'#>. Now
observe that > is not embeddable in Figure[l] Among embeddable rankings, the
Kemeny score is minimized by =1, >3, and >3, all of which achieve a Kemeny
score of 16. These are the embeddable Kemeny rankings.

One may ask whether it is sensible to use an ordinal voting rule such as
Kemeny’s rule in our setting where voters and candidates can be represented in
a coordinate space. It is important to note that we do not assume that a voter’s
position in R?, given by an embedding, is actually a correct representation of this
voter’s preferences. In particular, we do not assume that distances between voters
and candidates is an accurate measure of intensities. That is, a voter prefers a
candidate with distance 1 over a candidate with distance 2, but not necessarily
twice as much. Hence, our assumption of embeddability in d-Euclidean space
is significantly weaker than assuming a model where distances correspond to
voters’ utilities. In such a model, ordinal voting rules indeed are less useful
and choosing the geometric median of the set of voter pointaﬂ is more natural
than computing a Kemeny ranking (in contrast to Kemeny’s rule, the geometric
median can be computed efficiently [I3]). The next example shows that these
two concepts differ.

Ezample 2. Consider a 2-Euclidean election with two candidates C = {c1,¢a}
and three voters V = {v1,v9,v3}. The embedding p is given by p(ce) = —p(c1) =
(1,0); p(v1) = (3,6), p(ve) = (3,—6), p(vs) = (—10,0). Voters vy, vy prefer co
over c¢; while voter v3 prefers ¢; over cs. The optimal Kemeny ranking is thus

! The geometric median of a set of points S is a point that minimizes the sum of
distances to points in S (as does the Kemeny ranking albeit for a different metric).



co = ¢1 (which is clearly p-embeddable). In contrast, the geometric median m is
the point ~ (—0.46,0) which lies on the side of p(¢;) and thus corresponds to the
ordering c¢; > ca. The crucial point here is that if we changed the embedding so
that p(v1) = (4,6), p(v2) = (4, —6), the geometric median would lie at ~ (0.54, 0)
and thus correspond to the Kemeny ranking.

A similar observation can be made in the case of the egalitarian Kemeny
ranking; minimizing the maximum Euclidean distance is known as the 1-center
problem or smallest enclosing ball problem.

For the 1-dimensional case, the question is easy to answer.

Proposition 1 (#). In a p-embeddable 1-Fuclidean election, any optimal Ke-
meny ranking is also p-embeddable and coincides with the geometric median.

As we have seen before, Proposition [1| does not extend to higher dimensions:
Examples [1| and [2| are counter-examples for d = 2.

4 Computing Embeddable Kemeny Rankings

In this section, we give a brute-force algorithm to determine all p-embeddable
Kemeny rankings of a given p-embeddable election. In order to traverse all strict
p-embeddable orders, we observe their correspondence to faces of the hyperplane
arrangement that contains all hyperplanes consisting of points equidistant to any
two embedded candidates. This correspondence is also important for our main
algorithm (Section , which drastically improves the asymptotic runtime.

Consider a d-Euclidean election (C,V, (=, )vecy) embedded via p : CUV — R4,
For any pair ¢, ¢ € C of candidates we consider the hyperplane S, » = {z € R? |
lz — p(c)|la = ||z — p()||a}. Each S, divides R? into two halfspaces — one
containing p(c), we also say this halfspace lies on the same side of S . as ¢; and
one containing p(¢’). Each halfspace is assumed to be closed, that is, it contains
its bounding hyperplane. A face of the hyperplane arrangement {S. o | ¢, € C}
is a connected non-empty subspace of R¢ obtained by intersecting halfspaces of
the arrangement with at least one halfspace chosen for each hyperplane S; .
We write P to denote the set of all faces of the arrangement.

Let f € P be a face. For any pair of candidates ¢,c’ € C, we say that f
lies on the same side of S. . as ¢, if it is a subset of the halfspace that lies
on the same side of S as c. This allows us to identify f by the set X =
{(c,¢’) € C? | ¢ and the subspace lie on the same side of S, }; we write fy to
denote the face identified by X, i.e., fx = f. A face f is called k-face if it has
dimension k. Observe that for every face fx, either (¢,¢’) € X or (d/,c) € X
for every pair ¢, ¢’ € C. Further note that X can also contain both tuples (¢, ¢'),
(¢, c)—in that case, fx C S, . For a face fx, if (¢,¢’) € X then fx C {x €
R? | ||z —p(c)|lq < ||z —p(c')|la}. Additionally we denote the set of d-dimensional
faces as R and refer to them as regions. In the following, we use the standard
notation f° for the interior of a set f.



Intuitively, each face fx corresponds to a weak p-embeddable order for the
given d-Euclidean election and embedding p. This correspondence is formally
captured by the following result.

Lemma 1 (#). Let®: P — {= CC?| = is a p-embeddable weak order} be a
function defined by &(fx) == where c = ¢’ < (¢,c') € X. Then @ is a bijection.

Since we require that Kemeny rankings are strict, the following observation
showing that each region corresponds to a strict p-embeddable ordering for the
given embedded d-Euclidean election will be useful.

Lemma 2 (#). Let®:R — {= CC?| = is a p-embeddable strict order} be
the restriction of @ (from Lemma to regions. Also @' is a bijection.

For a face f € P, we write > instead of &(f) (this is a weak order). Further,
for a region R, we write >p instead of ¢'(R) (this is a strict order).

We can now use the preceding correspondences to give a straightforward
polynomial time algorithm that enumerates all p-embeddable strict orders.

Theorem 1 (#). Determining all p-embeddable Kemeny rankings for a d-
Euclidean election (C,V, (=y)vey) given by p : CUV — R? is possible in time
polynomial in |C|, more specifically in time in O(|C|%?).

Proof. Consider the d-Euclidean preference profile given by the function p :
CUV — R% For every f € P, let #(f) denote the number of voters in f, i.e.
#(f) = {v € V| pv) € f}|. By comparing the corresponding values for each
R € R, we can determine R € R which minimizes 3~ ;. #(f') K(= ¢, > r), and
denote such an R by Ry,in. We return >=g_.  as p-embeddable Kemeny ranking.

min

Correctness. For R € R and [ € P,

Y #()K(zpomr)= D> Y K(zp,>r)

flepP fleP wey
p(v)ef’

=2 2 K(zurn)

frerP wey
p(v)ef’

- Z K(>_'va >'R)

veV

Since we are looking for a p-embeddable Kemeny ranking, it has to have the
form > for some R € R by Lemma [2] which implies correctness.

Running time. The hyperplane arrangement induces O(|C|?*?) faces (by [27,
Corollary 28.1.2] as we consider at most (S') distinct hyperplanes) and can
be computed in time in O(|C|?*?) [19, Theorem 7.6]. For each face R € R, the
computation and comparison of the objective function naively requires time
in O(|P|?) € O(|C|*?). Thus the overall complexity of the procedure lies in
o(lcf*). o

An analogous procedure works for the egalitarian variant ().



5 Increasing Efficiency

To achieve a better runtime—in particular for large d—we conduct a more in-
depth graphical analysis of the relation of p-embeddable orders to each other.

Theorem 2 (Main Theorem, #). Determining all p-embeddable Kemeny
rankings for a d-Euclidean election (C,V,(=y)vey) given by p : CUV — R? is
possible in time in O(|C|2@“ D)) where w < 2.373 [4] is the exponent of matriz
multiplication.

5.1 Preference Graph
We define the preference graph Gy,.of as the edge-weighted graph given by setting

= V(Gprer) ={vy | f € P}

= E(Gprer) = {{vg,vp} | (dim(f) = dim(f) = 1A f C f) v (dim(f') =
dim(f) — 1A f C f)}; and

— w: E(Gpret) =& N, {vp,vp} = [{{c,d} CC
dim(f N Se.er) # dim(f)) V (dim(f N Se.er)
dim(")}|

In other words, vertices corresponding to faces one of which is contained in
the other are connected to each other by edges in Gpyef Whenever the dimension
of one face differs from the other by exactly one. The edge weights correspond to
the number of pairs (¢, ¢’) of candidates inducing this respective hyperplane. An
example is given in Figure (3] By a bound on the number of faces [27, Corollary

| (dim(f' N Se.) = dim(f') A
= dim(f) A dim(f’ N Ser) #

Fig.3: Gprer for candidates Ca - C3 =1 = ¢y
as given in Example [l ¢
Vertex shapes encode the
dimensions of the corre-
sponding faces, and dash-
styles encode weights where
edges without weight la-
bels have unit-weight. Ex-
emplary vertices are anno-
tated with the correspond-
ing p-embeddable orders.

C3 > Cq4 > Co > C1

Cq ™~ C3 > Co > C1

Cq > C3 > Co > C1

C1 =3 C4 >3 C2 =3 C3

28.1.2] and since we consider at most (lg‘) different hyperplanes, we can bound
the number of vertices by |V (Gprer)| € O(|C|??).

Gpref Without weights coincides with the incidence graph of a hyperplane
arrangement as defined in [19] which is constructed in time in O(|C|??) [19]
Theorem 7.6]. We modify this procedure to include the appropriate edge weights
for Gpref-



Lemma 3 (#). Gyt can be constructed in time in O(|C|??).

Note that at this point, we have set up or shown natural bijective correspon-
dences between: the vertices of Gprer, the faces in P, all p-embeddable orders of
C and sets of pairs of candidates in C which explicitly encode the pairwise com-
parisons according to such p-embeddable orders. In this way, it will be natural
to write any v € V(Gpref) as vy for some f € P, any p-embeddable order of C
as = for some f € P, and any f € P as fx for some X C C%

5.2 Shortest Paths in the Preference Graph

The crucial property of the preference graph, apart from capturing p-embeddable
orders through its vertices, is that the chosen edge weights reflect the Kendall-tau
distance between embeddable orders. We first show this for single edges.

Lemma 4 (#). For {vs,vp} € E(Gprer), w({vy,vp}) = K(zp, = p).

This previous lemma acts as the base case for the general correspondence of
distances in Gprer and the Kendall-tau distance between the orders associated to
the vertices of Gprer (i.e. the p-embeddable orders). We denote by distg,,.. (v, w)
the length of a shortest (in terms of summed edge weights) v-w-path in Gpyes.

Lemma 5 (#). For f, f' € P, K(=y, =) = distg,,. (vy,vyp).

Sketch. We present a proof by induction over the length ¢ of cardinality-minimal
shortest vy-vy-paths (i.e., a path having minimum number of vertices among all
weight-minimal paths between v, vg/). The proof makes use of the observation
that the Kendall-Tau distance between two faces fx, fy corresponds to the
symmetric difference | X AY'|. The base case ¢ = 2 is covered by Lemma

Now assume that the statement holds for any cardinality-minimal shortest
path of length ¢ — 1 and observe that each proper subpath of a cardinality-
minimal shortest vy-vy/-path consisting of ¢ vertices in Gprer is cardinality-
minimal; otherwise one can replace the subpath with a cardinality-minimal short-
est path, contradicting the assumption on vy ... vy . Together with the triangle-
inequality for the Kendall-tau distance, we get K(>=f, =) < distg,,., (vs,vy).

To show distg,,., (vy,vs) < K(=y, =), we construct a v-vy-path of weight
K(=f, =) by connecting two arbitrary points py € f° and pp € f'° via a
straight line [ and extracting a path along the traversal of [ from p; to py/. The
path consists of vertices v, with [ N g # (0 such that g € P satisfies dim(g) <
dim(g’) for all ¢’ € P with I[Ng = 1N g’; also, we connect every two vertices
Vi, Vi+1 which are—w.r.t. the ordering along the line traversal —”adjacent” but
not connected via an edge (i.e., | dim(f;) — dim(f;4+1)| > 1 for the corresponding
faces fi, fi+1) via a weight- and vertex-minimal path.

Let vy = vy, ...vy, = vy denote the constructed vs-vy-path P and let
X1,...,X, CC? denote the pairs of candidates such that f; = fx, according to
our notation introduced in Section [4] We verify that the constructed path P has
the desired weight K(=f,>s) = |X1AX,| by showing that a pair (c,c/) € C?



contributes to the weight of P exactly once if and only if (¢,c) € X1AX,.
Indeed, it can be shown that there is at most one edge {vy,, vy, } € P satisfying
fiNSeer =0 but fiy1NSee # 0; also there is at most one edge {vy,, vy, } € P
satisfying f; N Sc.r # @ but fiy1 N See = 0; ie., P "enters” and "exists” a
hyperplane S .- only once. This follows from the construction and by the fact
that a straight line intersects a hyperplane at most once. O

5.3 The Algorithm

Having established the correspondence between the Kendall-tau distance and the
shortest paths in the edge-weighted graph Gp.er we obtain the following result.

Theorem 2 (Main Theorem, #). Determining all p-embeddable Kemeny rank-
ings for a d-Euclidean election (C,V, (=y)vey) given by p : CUV — R? is possible
in time in O(|C|2@“+D), where w < 2.373 [§] is the exponent of matriz multi-
plication.

Proof. Consider the d-Euclidean preference profile given by the function p :
CUV — RY We construct the corresponding preference graph Gpef using
Lemma [3] We then apply the Shoshan-Zwick all-pairs shortest path algorithm
for undirected graphs with integer weights (proposed in [39] and corrected in
[20]) which returns a matrix Mg, € NV (Goret)xV(Goret) containing the length
of the shortest path between every pair of vertices in Gprer. For every vertex
vf € V(Gpret), let #(vy) denote the number of votersin f, i.e. # : V(Gprer) = N
with #(vs) = [{v € V | p(v) € f}|, or equivalently #(vy) = [{v € V |=,==¢}|.
By comparing the corresponding values for each R € R, we can determine all
R € R which minimize ;. p #(vy)-distc,,.. (vf’, vr), and denote such an R by
Ruin. We return the (set of) all such =g _, as p-embeddable Kemeny rankings.

min

Correctness (#). Correctness follows from the Lemmas and

Runming time. The construction of the preference graph takes time in O(|C|??)
by Lemma |3| By [20, B9], the all-pairs shortest path algorithm for undirected
graphs with integer weights runs in time in O(M - |V (G prer)|*) where M is the
largest edge weight and w < 2.373 is the exponent of matrix multiplication.
Since M < (1) we get O(M - |V(Gpret)|*) = O(|C2(*+D) The computation
and comparison of the objective function for each f € P naively requires time
in O(|P[?) € O(|C|*?). Thus the overall complexity lies in O(|C|?(dw+1)), O

Weak Kemeny Rankings. We remark that whenever we allow p-embeddable Ke-
meny rankings to be weak rather than strict, we can easily adapt our algorithm
by comparing the values of 3,/ p #(vy) - distq,,,.. (vyr, vy) for each f € P, de-
noting an f that minimizes this value by fmin, and returning = . as Kemeny
ranking. Correctness then follows immediately from Lemma

Egalitarian Kemeny rankings (#). An analogous result for the p-embeddable
egalitarian Kemeny method can be obtained by an appropriate adaption of the
objective function in the proof of Theorem



Strict Preferences. Conversely whenever we restrict ourselves to instances in
which all voters have only strict p-embeddable orders as preferences, we can focus
on a proper minor of G,.ef rather than the whole graph. More specifically we can
restrict ourselves to the vertex set given by {v € V(Gpret) | IR € R v = vr};
where edges between the vertices correspond to traversals of single hyperplanes:
We contract paths of length 2 in Gpes between such vertices to single edges
while summing up the weight of contracted edges (#). More explicitly instead
of Gpref We can consider the graph Hp.of given by the following information:

— V(Hpret) = {vr | R€ R};

— E(Hpret) = {{vr,vr'} | 3¢, € C dim(RNR' NS, ) =d—1}; and

— w: E(Hpret) = N, {vg,vp } — 2{{c,d} CC | dim(RNR'NSc,r) =d—1}].

Without weights, this graph is also known as the region graph or the dual graph
of the embedded election induced hyperplane arrangement. Using the represen-
tation of the region graph as medium, i.e., as a system of states and transitions
between states via tokens[24], we can employ a faster quadratic time all-pairs-
shortest-paths algorithm [24] to achieve a better runtime for strict orders.

Theorem 3 (#). Determining all p-embeddable Kemeny rankings for a d-
Euclidean election (C,V, (>=4)vey) in which all voters have strict preferences
given by p: CUV — R is possible in time in O(|C|*?).

6 Approximating the Kemeny Score

Our main algorithm fundamentally rests on the assumption that we are inter-
ested in an embeddable Kemeny ranking. As we have already seen in Example [T}
such an embeddable Kemeny ranking may differ from an optimal Kemeny rank-
ing. It is thus natural to ask

1. how often embeddable Kemeny rankings differ from optimal Kemeny rank-
ings; and

2. how far these rankings can be apart (measured by their Kendall-tau dis-
tance).

We investigate these questions via numerical experiments and prove a bound on
the worst-case approximation ratio of embeddable Kemeny rankings.

6.1 Approximation

Our goal is to quantify how much an embeddable Kemeny ranking and an opti-
mal Kemeny ranking may differ. This can be phrased as an approximability re-
sults for computing Kemeny’s voting rule in d-Euclidean elections. We show that
a p-embeddable Kemeny ranking 2-approximates any optimal Kemeny ranking.

Proposition 2 (#). Let < be an optimal Kemeny ranking, and <,s be a p-
Z'UEV K(‘<7'857'<'u) 2
ey K(==<w) = %7

However, it is unclear whether our ratio 2 is tight (even for d = 2). The
largest ratio we are aware of is 8/7 and arises, e.g., in Example

embeddable Kemeny ranking for a given embedding p. Then
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Fig. 4: Percentage of instances with ratio r > 1.

6.2 Experiments

We conducted numerical experiments on randomly generated 2-Euclidean elec-
tions to test the approximation quality of embeddable Kemeny rankings and to
record how often embeddable Kemeny rankings do not achieve an optimal Ke-
meny score. In brief, our experiments suggest that the optimal Kemeny ranking
is p-embeddable in 98.9% of the cases when considering up to 7 candidates.

To compute optimal Kemeny scores, we implemented Kemeny’s rule with a
trivial brute-force algorithm. The implementation for the p-embeddable Kemeny
score used in these experimentsﬂ does not exploit all runtime improvements from
the algorithm for strict orderings described in Section [5.3} its runtime currently
inhibits experiments on larger instances. We randomly generated instances of
2-Euclidean elections with n voters, 3 < n < 15, with strict preferences and
m candidates, 4 < m < 7, both of which we identify with points in [0, 1000]2. For
each pair (m,n), we generated 150 instances: 50 each assuming that (a) candi-
dates and voters are component-wise uniformly distributed; that (b) candidates
and voters are component-wise truncated normally distributed with mean 500
and variance 150; and that (c) candidates are uniformly distributed and voters
are truncated normally distributed with mean 500 and variance 150.

In total, we ran 7800 tests; among them, only 84 exhibited a p-embeddable
Kemeny ranking that differs from the optimal Kemeny ranking. In these 84
instances, the ratio r of embeddable and optimal Kemeny rankings is between
1.0077 and 1.11. A difference in the scores of the optimal and the p-embeddable
Kemeny rankings occurred slightly more often in uniformly distributed instances
— 1.85% of uniformly distributed instances have ratios r > 1, which is the
case for only =~ 0.7% for other distributions. Figure |4] gives an overview of the

2 We construct the preference graph Hprer by adapting the dual arrangement construc-
tion from CGAL (The CGAL Project, https://wuw.cgal.org) and apply Johnson’s
all-pairs shortest path algorithm to determine the p-embeddable Kemeny rankings.
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percentage of instances where » > 1. The results indicate that an increasing
number of voters does not cause a significant rise in the numbers of instances with
suboptimal p-embeddable Kemeny rankings. Interestingly, instances with an odd
number of voters have suboptimal p-embeddable Kemeny rankings significantly
more often (77 out of 84), possibly due to fewer ties. On the other hand, the
results indicate a positive correlation between the number of candidates and the
number of instances with suboptimal p-embeddable Kemeny ranking (for m = 4,
there is only one of 1950 instances with » > 1 (~ 0.05%), while for m = 7, 52
instances out of 1950 admit ratio r > 1 (= 2.66%)). This suggests that the low
overall percentage is due to the choice of the candidate range. Further tests with
a larger number of candidates remains—due to limited computational power and,
in terms of runtime, suboptimal implementation of the p-embeddable Kemeny
ranking computation—a point on our future agenda.

7 Conclusions and Open Problems

We have shown that p-embeddable Kemeny rankings can be computed in time
in O(|C|*) for strict orders and O(|C|*746'9+2) for weak orders. Apart from
improving these runtimes, it would be interesting to provide lower bounds on the
computational complexity. In particular, a W[1]-hardness result for computing
p-embeddable Kemeny rankings could show that the dimension d has to occur
in the exponent.

Further, our polynomial time solvability result juxtaposes the NP-hardness
for the KEMENY SCORE problem on d-Euclidean elections, i.e., when one assumes
p-embeddable preferences (given by p) but allows non-embeddable Kemeny rank-
ings. To slightly relax our embeddability requirement on solutions with the hope
of still remaining in P it would also be interesting to consider the problem where
one requires a solution to be embeddable together with all voter preferences in
the same dimension as the input, but allows the embedding to differ from the
input embedding.

Let us end with a conceptual note. While d-Euclidean preferences are well-
motivated and used in applications [22], 31], 32], there have been no successful
attempts to leverage their structural properties for tractability results for d > 2,
to the best of our knowledge. A likely reason for this is that combinatorial
properties implied by d-Euclidean preferences seem to be difficult to derive. Our
constructions of Gprer (and Hprer for strict preferences) in Section [5| may thus
be of independent interest as a concise representation of d-Euclidean preferences
and their mutual Kendall-tau distances under a fixed embedding. We would like
to encourage the study of d-Euclidean preferences also for other computationally
hard voting rules (such as Dodgson, Young).On this note, very recently many
approval based multiwinner voting rules which are polynomial times solvable on
1-Euclidean elections were shown to be NP-hard on 2-Euclidean elections [26].
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A 1-Dimensional Euclidean Elections
(Proof of Proposition [1))

Proposition 1 (#). In a p-embeddable 1-Euclidean election, any optimal Ke-
meny ranking is also p-embeddable and coincides with the geometric median.

Proof. 1t is well-known that, in the 1-dimensional case, the Kemeny winner is
a Condorcet winner and coincides with the median of the set of voter points,
which is clearly p-embeddable; this result is known as the median voter theorem,
see, e.g., [I2]. The median voter(s), on the other hand, define(s) the interval
for the geometric median in the 1-dimensional setting—in case the number of
voters is odd, the median is a single point; in case the number of voters is
even, the geometric median is the interval [my, msy] for my, mo being the points
corresponding to the two median voters. O

B Correspondence of Hyperarrangement Faces and
p-Embeddable Preferences
(Proofs of Lemma 1| and Lemma

Lemma 1 (#). Let &: P — {= C C* | = is a p-embeddable weak order} be a
function defined by ¢(fx) == where ¢ = ¢’ < (¢,c') € X. Then @ is a bijection.

Proof. @ is well-defined, since for each fx € P, there is x € R% such that
le = ple)la < ||z — p(d)]la & (e,¢) € X. Actually, it suffices to choose any
x € fxI°’l Moreover, @ is easily seen to be bijective:

For injectivity, consider fx, fx+ such that X # X’. Without loss of generality
let (c1,c2) € X\ X', then, by definition of @, ¢; =y, ¢z and ¢1 #¢,, ¢2 and thus
(fx) P (fx).

For surjectivity, let = be a p-embeddable weak order on C, let € R? such
that ¢ = ¢ < ||z —p(e)|la < ||z —p(c)|a. Since P = R?, there is some X such
that x € fx. For ¢1,c0 € C

(c1,¢2) € X & ||z —pler)|la < ||z = ple2)|la & 1 = c2
implying #(Rx) =>. O

Lemma 2 (#). Let &': R — {= C C? | = is a p-embeddable strict order} be
the restriction of @ (from Lemma to regions. Also @' is a bijection.

Proof. Assume for contradiction that a region R € R is mapped to an ordering
which is not strict. In particular let ¢, ¢’ € C be such that ¢ = ¢’ and ¢’ = c.
Then R C S, by definition of ¢ which implies that dim(R) < dim(Sc ),
contradicting R € R.

3 Recall the standard notation for the interior of subsets of a dim(fx)-dimensional
Euclidean space.



Conversely assume for contradiction that there is some strict p-embeddable
order = which is not in ®(R). As by Lemma [I] &(P) contains all weak p-
embeddable orderings, let f € P\ R such that &(f) =>. Note that every face in
‘P which has dimension at most d — 1 is contained in some hyperplane S; . with
¢,d € C. Let ¢,¢ € C be such that f C S, . Then by definition of @, ¢ > ¢’ and
¢ = c contradicting the assumption that > is strict. O

C Construction of Gper (Proof of Lemma [3))

Lemma 3 (#). Gper can be constructed in time in O(|C|*?).

Proof. Gpref without weights corresponds exactly to the incidence graph of
a hyperplane arrangement as defined in [I9] which is constructed in time in
O(|C|??) [19, Theorem 7.6]. We can modify this procedure to include the appro-
priate edge weights for Gper. More specifically the algorithm in [I9] proceeds in
two steps; namely instantiation and an incrementation.

In the instantiation step at most d intersecting hyperplanes are considered as
a starting point for the algorithm. For all edges between vertices in this initial
incidence graph of the initial hyperplanes we can explicitly compute the weight
in time in O(d%¢|C|?) C O(|C|?) just by going through all edges and all pairs of
candidates.

In the incrementation step one hyperplane H is added into the partially
constructed (previous) arrangement. The addition of H incurs new vertices and
new edges which are incident to these vertices. More specifically, two kinds of
new vertices are introduced; vertices which correspond to faces contained in H,
and vertices which correspond to previous faces which were subdivided by H.

It is easy to see that a new edge connecting the vertex for a d-dimensional face
to the vertex for a (d—1)-dimensional face included in the new hyperplane, should
receive as weight the number of candidate pairs ¢, ¢’ € C, for which H = S, .
Similarly a new edge connecting the vertex for a d-dimensional face and the
vertex for a (d — 1)-dimensional face which are now subdivided by H, should
receive as weight the weight of the previous edge between the corresponding
unsubdivided face. New edges between lower dimensional faces can be viewed as
the subdivision of a previous edge into two edges; one edge that is incident to a
new vertex corresponding to a face included in H and a new vertex corresponding
to a previous subdivided face, and one edge that is incident to a new vertex
corresponding to a previous subdivided face and a previous vertex. The first
kind of edge should receive the weight of the previous subdivided edge plus the
number of candidate pairs ¢,¢’ € C, for which H = S .. The second kind of
edge should simply receive the weight of the previous subdivided edge. All other
edges are also previous edges. The only previous edges whose weights we need
to change are those which have an endpoint corresponding to a vertex of a face
that already was a previous face, but is included completely in H (in particular
such vertices coincide with previous vertices although they correspond to faces
included in H, as no subdivision takes place). These edges should receive their
old weight plus the number of candidate pairs ¢, ¢ € C, for which H = S, ..



Calculating the number of candidate pairs ¢,c¢’ € C, for which H = S, o
implies an additional additive component in the runtime of the incrementation
step, which does not change the overall runtime of the algorithm from [19]. O

D Shortest Paths in Gpyer
(Proof of Lemma |4, Full Proof of Lemma [5)

Lemma 4 (W). For {vg,vp} € E(Gpret), w({vg,vp}) = K(zyf, = ).

Proof. Without loss of generality let f’ C f and observe that (i) ¢ = ¢’ implies
¢ =y forall ¢, € C: ¢ =y ¢ if and only if f and ¢ lie on the same side of
Se,e; thus ¢ = ¢ is immediate by f' C f.
w({vy,vp}) = {{e, '} CC [ dim(f' N Se.er) = dim(f)A
dim(f N Seer) # dim(f)}|
={{e.dycClf CSee NfFELSeel
={{c,d}CC|(c=p N =p )N
(czgpd N Ep o) Vet d N zp )}
={{c.d}CC|(c=p N =pe)V(d =g che=f )Y
=K(zpzp) by (D).

Lemma 5 (#). For f, f' € P, K(=y, =) = dista, .. (vy,vs).

Proof. Before we begin with the actual proof, observe that K(=j,,>=ys ) =
| XAY| for arbitrary fx, fy € P:

K*(tfxvi_fy) =|{{z,yt CCl(z Zix YNT Ly y) Vv (y Zix TANY Ly )}
+tI{z vy CCl @ zp yAe L v) VI zp Ay Zpy 0)}]
=[{{z,y} CCl(2,9) e X\Y V (y,z) € X\ YV}
+{{z,yt CCl(2,y) €Y\ XV (y,7) €Y \ X}
= {(z,9) CC?| (z,y) € X\ YV (z,y) € Y\ X}
= |XAY].

This means that Lemma [ can be reformulated to:
For {vpe,vpy b € E(Gpret) w({vpy,vp }) = [XAY]. (1)

Now, let f, f' € P. We call a weight-minimal v-v-path in Gprer cardinality-
mianimal shortest if it consists of the minimum number of vertices among all
weight-minimal paths between vy, vy. We proceed by induction over the length
£ of cardinality-minimal shortest vs-vs/-paths.

In case ¢ = 2, we have {vf, vy} € E(Gprer) and the statement of the lemma
is given immediately by Lemma [4]



Now assume that for any cardinality-minimal shortest vg-v4/-path consisting
of £ — 1 vertices in Gpyer it is true that distgpref(vg,vxg,) = K(>=g4, =4 ). Let
vf = vy, ...Vf, = vyg be a cardinality-minimal shortest v¢-vy/-path consisting of
£ vertices in Gpref. Observe that each proper subpath of vy, ... vy, is cardinality-
minimal; otherwise one can replace the subpath with a cardinality-minimal short-
est path, contradicting the assumption on vy, ...vs,. Thus distq, . (vy,,vs,) =
diStGpref (vfsvp) + diStGpref (Vfas vf,)-

Using the triangle-inequality for the Kendall-tau distance, we get that

K(zp zp) <K(zp, =) + K(z g, = p7)
= distg,, . (vf,vys,) +distg,, . (vs,, v ) (by induction hypothesis)
= diSt(;pref (Uf, Uf/).

To show distg,,., (vy,vy) < K(>=y, =), we construct a vs-vy-path of weight
K(>y,>y/). The construction works as follows.

Consider two points ps,ppr € R? such that p; € f° and pp € f'°. Let
l={zeR¥|z=1t(pp —ps)+pys,t€0,1]} denote the straight line connecting
the points py,py. We construct a path along vertices that correspond to faces
which have a nonempty intersection with I: Let V; = {v, | g € P,INg # 0}. For
Vg, Vg € Vi, we let vy ~; vy whenever INg =1Ng'. It is easy to see that ~; is an
equivalence relation. For each equivalence class £ of ~;, we consider the vertex v,
as its representative if dim(g) < dim(g’) for every v, € €. Observe that there is
a unique vertex associated to a face with minimal dimension in each equivalence
class: Assume there are vertices vy, vy € € such that dim(g) = dim(g’) = k is
minimal among all vertices in £. Consider the face h = gNg’. Clearly, hNi # 0,
as vg,vy € Viand INh =1Ng=1Ng’. Thus v, € £ and h has dimension k — 1,
contradicting the minimality of dim(g) = dim(g’).

Let vy = vy,,...,vp, = vy denote the representative vertices of all equiva-
lence classes of ~; ordered as follows. Let vy = vy,. Assuming that the first i
vertices are already ordered, we define vy,,, to be vertex associated to the face
fi+1 minimizing ¢ € [0, 1] such that t(py —ps) +ps € fit1 and t(pp —py) +ps ¢
U;‘:1 fj, i.e., we order the vertices along the traversal of [ from p; to py.

Note that f; C fi+1 or fir1 C f; for all ¢ < k: Otherwise there is a face
g = fiy1 N fi which has nonempty intersection with /. Then dim(g) < dim(f;,
dim(g) < dim(f;+1) and v, belongs either to [vy,]~ or [vy,,,]~, contradicting the
minimality assumption of either dim(f;) or dim(f;41).

In case |dim(f;) — dim(fi+1)| > 1, we connect the vertices via a weight- and
vertex-minimal path vy, = vy, ...vg. = vy, satisfying g; C git1 if fi C fiy1,
and g; O gi+1 if fi D fiy1). Otherwise {vy,, vy, } € E(Gprer) by construction of
Gpref~

Let the vertices vy = vy, ...vf, = vy correspond to the vertices of the vy-
vg-path P arising from the construction. Moreover, let Xq,..., X, C C? denote
the pairs of candidates such that f; = fx, according to our notation introduced
in Section 4] We show that (¢,¢’) € X7 N X, if and only if (¢,¢’) € X; for all
1< s:



= Let (¢,¢) € X;1 N X,. Then the points py,pp both lie in the halfspace
Hee = {2 € RY | |2 —c|la < ||o — ||} and hence so does | C H, . by
convexity of H. Since each face fx, with vy, € V; has nonempty intersection
with [, we have H. o N fx, # 0 which implies that fx, C Hc. If vy, ¢ V)
then, by construction, f; C f; for some f; with vy, € V;. Thus in any case
(¢,c) € X;.

<« For contraposition consider a pair (c,c’) € C? with (¢,c/) ¢ X3 N X,. This
means, both points py, pys lie in HZ, .. Since a line segment connecting two
points in the interior of a convex set is itself also contained in the interior of
the set, we have | € Hy, , i.e., | € Hec and | ¢ Se, . Again, since each face
fx, with vy, € V| has nonempty intersection with I/, we conclude fx, € He .
whenever vy, € V. ; moreover, fx, ¢ S; o since | ¢ S. . Thus (¢, c) € X;
and (¢,c') ¢ X; for all i < s.

It follows that (c,c’) contributes to the weight of P if and only if (¢,¢') €
X1AX,: Assume there is (¢,¢’) which contributes to the weight of P but (i)
(¢,d) € Xy N X, or (i) (¢,) ¢ X1 UX,. In Case (i) we have showed that,
(¢,d") € X; for all i < s and thus (¢, ') cannot contribute to the weight of any
edge of P because of Equation (). In Case (ii), we have (c,c’) ¢ X; for alli <n
by our previous arguments, thus (¢, ¢’) cannot contribute to the weight of any
edge of P by Equation .

Now assume for contradiction that there is some (c¢,¢’) € X;AX which
contributes to the weight of P at least twice, i.e. at two different edges of P.
Let (¢,c) € X;AX;41 and (¢,c') € X;AX 41 for i # j € [s], and let {i/,i'} =
{i,i+1} and {j,5'} = {j,j+ 1} such that (c,’) € X; and (c,c’) € Xj. By the
construction of P there must be pairwise different Uy Vfxg o Vix; € V; which
lead to the inclusion of Ut Ufx, and U, in P respectively, for which it also
holds that (c, ') € X; N X; but (¢, ¢') ¢ Xj. This implied that the straight line I
intersects the hyperplane S; » in two different points, which is a contradiction.

All together we have shown that we can find a vy-vy-path with weight
|X1AX,| and thus distg,,.(vs,vp) < |[X1AX| which by our initial observa-
tion is equal to K(>y,>). O

E Correctness of the Algorithm (Theorem

Theorem 2 (Main Theorem, #). Determining all p-embeddable Kemeny rank-
ings for a d-Euclidean election (C,V, (=,)vey) given by p : CUV — R? is possible
in time in O(|C|2@“ D)), where w < 2.373 [§] is the exponent of matriz multi-
plication.

Proof. We prove correctness of the algorithm.



Correctness (#). By Lemmalf] for R € R and f' € P,
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Since any strict p-embeddable order has to have the form =g for some R € R by
Lemmal2] and any weak p-embeddable order which might be part of the input has
to have the form > for some f € P by Lemma |I|, this implies correctness. [

F Approximation (Proof of Proposition [2))

Proposition 2 (#). Let < be an optimal Kemeny ranking, and <,.s be a p-

embeddable Kemeny ranking for a given embedding p. Then Zpey Kl 2) < 2.
>vev K(=:=w)

Proof. Let v* € V be the voter whose preference ranking is closest to < in
the sense that K(=<yes, <y+) I8 minimum. As <,« is obviously p-embeddable,
and <, IS a p embeddable Kemeny ranking we have that ) ), K(<res; <o) <
> vey K(<uv+, <u). Now using the triangle inequality for K and the choice of v*,
we get that
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G Strict Preferences (Hprer and Proof of Theorem

In this section of the appendix we consider the setting where we are given an
embedding p : CUY — R? and a p-embeddable election (C,V, (=, )vey) in which
all voters’ preferences (>-,)yey) are strict orders.

Recall that we introduced Hpyer as follows.

— V(Hpref) = {UR | R e R};

— E(Hpret) = {{vg,vr'} |3e,d € C dim(RNR' NSc)=d—1}; and
— w: E(Hprer) =& N, {vg,vr} = 2|{{c,d'} CC | dim(RNR' NS ) =d—1}|.



We verify that this is indeed isometric (but not isomorphic) to the graph one
obtains from Gpres by contracting all paths between, but not including, vertices
in {vg | R € R}.

Lemma 6. For R, R’ € R, it holds that diSthref (UR,UR/) = distgpref (UR,’UR/).
Proof. We show the statement in two steps:

1. We show that there is a shortest path in Gt between vg and vr, whose
internal vertices correspond only to faces of dimension d and d — 1 of the
embedded election induced hyperplane arrangement.

2. We show that for any edge {vr,vr'} of Hpret, wW({vr,vr'}) = K(>r, > r').

With these two claims in hand the statement follows as by Claim 1 for ar-
bitrary R, R' € R, distg,,.;(vr,vr/) can be attained by a path in Gpef which
consists of vg = VR, ,Vh,, VR, -+ Vh,_,, VR, = Vg’ Where each R; is a region,
and each h; is a (d — 1)-dimensional face. This path can be translated straight-
forwardly to a vp-vg/-path in Hp,ef, simply by considering vg,,vR,,...,vr,. By
Claim 2 and Lemmal5] the weight of this path is equal to the weight of the path
in Gpref, which concludes the proof of the lemma.

We proceed to prove the claims:

Claim (1.). Let R, R’ € R. In the proof of Lemma [5| we were able to construct
a shortest vp-vg/-path in Gper by following a straight line from an arbitrary
point in the interior of R to an arbitrary point in the interior of R’. The same
construction applied to a such a line which does not intersect any face of dimen-
sion less than d — 1 proves the claim. Hence it remains to show that such a line
always exists.

For this start with a straight line | between arbitrary p € R° and q € R'°.
Denote by N the set of faces of dimension less than d—1 that are not intersected
by I, and by M the set of faces of dimension less than d — 1 that are intersected
by [. Now let € be defined as half of the minimum over the Euclidean distance
of p to BHﬂ and the Euclidean distance of [ to N. By the choice of € no line
I' arising from [ by moving the endpoint p distance € in any direction in R?
intersects any set in N. Moreover, moving p in this way maintains the fact that
p € R°. If M = (), then [ is as desired. Otherwise let f € M. Now consider
" that arises from [ by moving the endpoint p distance € in the direction of a
vector in R? which is linearly independent of f and I (such a vector must exist
because dim(f) < d — 1). Then by construction I’ does not intersect f, and we
can iterate the modification with I’ instead of [ with a strictly smaller set M to
obtain a desired line.

Claim (2.). Let {vg,vr'} € E(Hprer). Then by the definition of E(Hpyer) there
is a unique hyperplane S € {S. . | ¢,¢’ € C} such that SN RN R’ has dimension

* Recall the standard notation for the boundary of subsets of a dim(fx)-dimensional
Euclidean space.



d — 1. In fact this is the unique hyperplane for which R and R’ lie on different
sides. Then by the definition of the weights in Hpycr

w{vr,ve}) = 2[{{e, '} CC | Seer = S}
=2|{{c,d'} CC| (R and c lie on the same side of S, A
R" and ¢’ lie on the same side of S, )V
(R and ¢ lie on the same side of S, A
R’ and c lie on the same side of S )}
=2{{c,d}CCl(c=rd A =r )V (¢ =rchcp )}
=K(-r, ~r).

O

As for the construction of Hper it can easily be constructed from Gprer by
deleting all vertices which cannot be reached from {vg | R € R} by a single edge
in Gpret, and then contracting all remaining paths between, but not including,
vertices in {vr | R € R} and adding up their respective weights on the resulting
edges. From this we get:

Proposition 3. Hp. can be constructed in time in O(|C|??).

The crucial difference between Gprer and Hpref, is that the structure of Hpyef
allows us to employ a known and more efficient all-pairs shortest path algorithm
which is tailored to graphs induced by so called media.

Denote by Hp, ¢ the graph that has the same vertices and edges as Hpyer and
unit weight for all edges. As already mentioned in Section Hp, ¢ s the region
graph of the embedded election induced hyperplane arrangement.

A medium is a certain type of deterministic finite automaton, consisting of
a set of states and a set of tokens which determine actions on (or transitions
between) states, satisfying certain axioms. As discussed in [24], any hyperplane
arrangement in R? can be represented as medium where the regions correspond
to the states and the tokens correspond to the halfspaces A bounded by some
hyperplane S}, of the arrangement. A halfspace h acts on a region R if R C h
and dim(RNSy) = d — 1; the result of the action is the uniquely defined region
R' # R, (RC R\ h)US), for which RN S, = R' N Sy, holdd]

It will be convenient to identify the states with the vertices vg, R € R
instead of regions R. A halfspace H. . acts on a state vg if R C H. and
dim(R NS¢ ) = d—1; the result of this action is then given by the node vg/ for
which dim(RN R’ N S ) = d — 1 (by definition, v, vg: are connected via an
edge in Hpyef). In this way H_ ¢ is the graph induced by the described medium.
To adapt the all-pairs shortest paths algorithms for media to be used on Hpyet
the following statement is helpful.

® Notice that in [24], an action of a halfspace h on a region R is defined by requiring
R° C R? \ h instead of R C h, i.e., in our definition, we exchange the roles of the
halfspaces h,h' = R\ h.



Lemma 7. Let R,R' € R. Then every minimum weight vg-vg -path in Hpyer
s also a minimum weight vr-vg -path in H;ref and vice versa.

Proof. Let vg = vg,,...,Vr, = vrp be a minimum weight vp-vg-path P in
Hpe. For i € [f] let X; C C? such that R; = fx,. It is known [33, Theorem 7.17]
that

distH;ref (vr,vr) = [{Se.r | ¢, € C AR and c lie on the same side of S¢ .} A
{Sc.er | ¢, € CAR' and c lie on the same side of S . }|.

By Lemma [6] and the fact that K(>g,>r) = [X1AX|, as shown in the
proof of Lemma [p| we know that for each

S e{S. | ¢, € CAR and c lie on the same side of Sc } A
{Sec.er | ¢, € C AR and c lie on the same side of S, .},

there exactly one edge {vr,,vr,,,} of P such that R; and and R;y; lie on
different sides of S: At least one such edge has to exist because by construction
of Hpyef no path without such an edge can connect vg and vg/. Assume for
contradiction that

S €{S. | ¢, €CAR and c lie on the same side of Sc } A
{Sec.er | ¢, € C AR and c lie on the same side of S .}

be such that there are two such edges, and let ¢,¢’ € C be such that S = S, .
Then by the choice of X; and Xy, (¢,¢’) € X1 AX, contributes to the weight of
P in H,¢ at least twice, which contradicts that it is a weight minimum weight
vR-Ur-path P in Hper being at most | X1 AX,|.

Now assume for contradiction that there is some S € {S; | ¢,¢ € C} for
which

S ¢{S;, | R and c lie on the same side of S¢ } A
{Sc,e | R" and c lie on the same side of S, },

but there is some {vg,,vR,,, } of P such that R; and and R;; lie on different
sides of S. Again let ¢,/ € C be such that S = S .. Then by the choice of
X; and Xy, (¢,) ¢ X1AX, contributes to the weight of P in Hpyer, which
contradicts that it is a weight minimum weight vp-vg/-path P in Hy,s being at
most | X1AXy|.

This shows that P is also a shortest path in HJ, .

The converse direction, i.e. that any shortest path in H_ . is a shortest path
in Hprer can be shown analogously. O

Lemma 8. Minimum-weight paths between all pairs of vertices in Hper can be
found in time in O(|V (Hpret)|?)-



Proof. We adapt the all-pairs shortest path algorithm for media [24] by incor-
porating additional information for weights associated with tokens in order to
handle the case if several pairs of candidates {c,¢’} C C? induce the same hy-
perplane. The states correspond to the region nodes vy, R € R; the tokens
correspond to the halfspaces H, ., He . for each pair ¢,¢’ C C? together with
the number of pairs of candidates which generate S, », that is, a token is a tuple
(H. ., k) where H,. . is a halfspace and k = [{{c1,ca} C C? | Sp.v = S¢y e, . Let
T denote the set of tokens. A token (H. ., k) acts on vg if R C H. and there
is {vr,vp'} € E(Hpret) with R’ € He ; in this case, the result of the action is
VR

The all-pairs shortest path algorithm for media constructs a matrix M that
contains the distances between all nodes vg, R € R. Starting from a |V (Hpyer)| X
|7|-table which lists the actions of each token for each node, the algorithm com-
putes the entries of M by performing a depth first traversal of the states of the
medium while maintaining a data structure consisting of

— the current node vg visited by the traversal,

— a doubly-linked list L of pairs (¢, A;) where t = (H, ., k) satisfies R C H, ./;

— a pointer from each state w # vg to the fist pair (¢, A;) such that ¢ acts on
w;

— a list A; for each pair (¢, A;) listing the states pointing to the pair.

The algorithm builds a tree rooted at vy with consists of the shortest unweighted
paths from vgi to each node w in Hy,ef. The tree is constructed by adding, for
a node w, a directed edge for each pointer pointing to a pair (¢, 4;) to the
result of the action. We adapt the construction by weighting the edges in the
graph as follows. For an edge e introduced by a pointer pointing to (¢, A;) where
t = (Hee, k), we set w(e) = k. The distances between vgr every other node
are then computed by taking the weights of the tokens into account, in time in
O(|V (Hpyer)|?). The computation yields correct results since, by Lemma [7], the
shortest paths in the unweighted graph H ¢ correspond to the shortest paths
in Hprcf.

The data structure is updated along the traversal of the graph Hpf anal-
ogously to the algorithm presented in [24]. As the only difference is that we
consider a weighted shortest path tree rooted at vg for every node vy for which
the computation of the shortest paths is as expensive as the unweighted case, the
modification does not add to the overall runtime which lies in O(|V (Hpyet|?). O

Theorem 3 (#). Determining all p-embeddable Kemeny rankings for a d-
Euclidean election (C,V, (>y)vey) in which all voters have strict preferences
given by p: CUV — RY is possible in time in O(|C|*9).

Proof. Consider the d-Euclidean preference profile given by the function p :
CUV — R We construct the corresponding preference graph Hyor using
Proposition [3| We then apply a modification of the all-pairs shortest path algo-
rithm for partial cubes cite described in Lemma [§] to obtain a matrix Mgis €
NV (Hpret) <V (Hpret) containing the length of the shortest path between every pair
of vertices in Hpyef-



For every vertex vg € V(Hprer), let #(vg) denote the number of voters in
R, ie. # : V(Hper) — N with #(vg) = [{v € V | p(v) € R}|, or equivalently
#(vr) = |{v € V |=,==g}|. By comparing the corresponding values for each
R € R, we can determine all R € R minimizing ), . p #(vr')-distg,, .. (Vr/, VR).
We return the corresponding orderings > g as p-embeddable Kemeny rankings.

Correctness. By Lemmalf] for R € R and R’ € R,
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Since any strict p-embeddable order has to have the form >pg for some R € R
by Lemma [2| this implies correctness.

Running time. The construction of the preference graph takes time in O(|C|??)
by Proposition [3] By Lemma [8] the modified all-pairs shortest path algorithm
runs in time in O(|V(Gpyer)|?). The computation and comparison of the objective
function for each R € R naively requires O(|R|?) C O(|C|*?). Thus the overall
complexity of the described procedure lies in O(|C|*?). O

H p-Embeddable Egalitarian Kemeny Rankings

Our results for the p-embeddable Kemeny ranking can be adapted to the p-
embeddable egalitarian Kemeny method via slight modifications of the objective
functions. Let 13(f) denote the function that indicates, for a face f € P, the
existence of with preference ordering >y, i.e.,

1 if there is v € V with p(v) € f,
13(/) = 0 else

Theorem (1| can be adapted to the egalitarian Kemeny method by replacing the
objective function in the proof of Theorem (1| with maxscp 15(f) - K(>=¢, >R).
It is easy to see that maxysep 13(f) - K(>f, >r) = max,ey K(>,, =r) for any
R € R and f € P, which implies, together with Lemma [2] correctness of the
algorithm. Moreover, since the adaption of the objective function does not add
to (nor reduce) the running time of the computation and comparison of the
function for each R € R, we get a (for fixed d) polynomial time algorithm for
the egalitarian Kemeny method.



Theorem 4. Determining all p-embeddable egalitarian Kemeny rankings for a
d-Euclidean election (C,V, (=y)vey) given by p: C UV — R is possible in time
polynomial in |C|, more specifically in O(|C|%9).

By replacing the objective function in the proofs of Theorem [2]and Theorem 3]
by maXxygep lg(f) . diStGP,-ef (>_'f, >‘R) (by maxpr/er 13(R/) . diStGpref(>.R/7 >‘R) for
strict orderings, respectively), we get the following results with improved run-
time:

Theorem 5. Determining all p-embeddable egalitarian Kemeny rankings for a
d-Euclidean election (C,V, (=y)vey) given by p:CUYV — R? is possible in time
in O(|C|24“+1))  where w < 2.373 [4] is the exponent of matriz multiplication.

Theorem 6. Determining all p-embeddable egalitarian Kemeny rankings for a
d-Euclidean election (C,V, (>4)vey) in which all voters have strict preferences
given by p: CUYV — R? is possible in time in O(|C|*?).
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