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ABSTRACT
Voting in multi-issue domains allows for compromise outcomes

that satisfy all voters to some extent. Such fairness considerations,

however, open the possibility of a special form of manipulation:

free-riding. By untruthfully opposing a popular opinion in one

issue, voters can receive increased consideration in other issues.

We study under which conditions this is possible. Additionally, we

study free-riding from a computational and experimental point of

view. Our results show that free-riding in multi-issue domains is

largely unavoidable, but comes at a non-negligible individual risk

for voters. Thus, the allure of free-riding is smaller than one could

intuitively assume.
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1 INTRODUCTION
Elections are a fundamental and well-studied form of collective

decision making. One can often observe that elections do not occur

as isolated events with a tightly constrained decision space (i.e.,

only a small number of candidates). Instead, a group of voters needs

to make several decisions, either at the same time (cf. multiple ref-

erenda [3, 6, 8] or voting over combinatorial domains [33]) or over

time (cf. perpetual voting [14, 26] or successive committees [11]).

For example, the council of a faculty or the members of a sports

club have to make several independent decisions each year. By con-

sidering these individual decisions in conjunction, one can achieve

more equitable outcomes than would otherwise be possible. As the

combinatorial complexity increases with the number of issues, so

does the possibility of finding good comprise outcomes.

However, by striving for fairness across multiple issues, we open

the door to a specific, simple form of manipulation: free-riding. We

define free-riding as untruthfully opposing a necessarily winning

candidate. That is, if there is a very popular (maybe unanimous) can-

didate for a certain issue, it typically does not change the outcome

if one voter does not approve this candidate. Under the assumption

that the voting rule in use tries to establish some form of fairness,

it will give this voter additional consideration as she does not ap-

prove the choice in this issue. As we show in our paper, this form of

manipulation is possible almost universally in multi-issue voting.
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The problem of free-riding is particularly apparent if issues are

decided sequentially. Then, presented with a popular candidate that

is certain to win, a voter may be especially tempted to misrepresent

her preferences. This is because untruthfully opposing a winning

candidate artificially lowers the voter’s (calculated) satisfaction and

thus gives the voter additional weight for subsequent issues, if the

voting rule is taking past satisfaction into account. Thus, intuitively,

it may appear as if free-riding is a form of risk-free manipulation.

The main contribution of our paper is to refute this intuition.

While free-riding is indeed often a successful form of manipulation,

it is far from trivially beneficial for free-riding individuals. For our

analysis, we consider two fundamentally different categories of

voting rules: rules based on a global optimization problem and rules

based on sequential decisions. Within both categories, we consider

voting rules based on order-weighted averages (OWA [3, 45]) and

on Thiele scores (inspired by multiwinner voting [31, 44]). Based

on these classes, we obtain the following results:

• First, we show that almost every OWA and Thiele rule as

well as their sequential counterparts are susceptible to free-

riding. The utilitarian rule, maximizing the sum of utilities,

is the only exception.

• Unsurprisingly, it is computationally hard to determine the

outcome for OWA and Thiele rules based on global optimiza-

tion. However, we show even stronger hardness results: even

when the winner of an issue is known, it remains computa-

tionally hard to determine whether free-riding in this issue

is possible. Thus, for rules based on global optimization, it

is computationally difficult and may require full informa-

tion to free-ride. We conclude from these results that for

optimization-based rules, free-riding is at least no more of a

concern than the general problem of strategic voting.

• For sequential OWA and Thiele rules, we observe an inter-

esting phenomenon. Here, it may be that free-riding in an

issue leads to a lower satisfaction in subsequent issues. Thus,

free-riding for these voting rules is not risk-free. Moreover,

we show that it is a computationally hard task to determine

whether free-riding is beneficial. We note that this decision

requires full preference information about all issues; in the

case of incomplete information voters cannot determine the

impact of free-riding.

• Finally, votersmight still decide to free-ridewithout certainty

about the outcome if the risk is small enough. To study

this question, we complement our theoretical analysis with

numerical simulations to quantify this risk. Our simulations

show that the risk of free-riding is indeed significant, even

though positive outcomes are more likely.

In general, our results show that free-riding in multi-issue voting

is not as simple and risk-free as one could intuitively assume.



1.1 Related Work
Our work falls in the broad class of voting in combinatorial do-

mains [33]. In contrast to many works in this field (e.g., [1, 8, 9, 16,

32]), we assume that voters’ preferences are separable (i.e., inde-

pendent) between issues.

Our work is most closely related to papers on multiple referenda.

Amanatidis et al. [3] study the computational complexity of OWA

voting rules in multiple referenda, including questions of strategic

voting. In a similar model, Barrot et al. [6] consider questions of

manipulability: how does the OWA vector impact the susceptibility

to manipulation. In contrast to our paper, these two papers do

not consider free-riding. We discuss more technical connections

between these papers and ours later in the text.

Another related formalism is perpetual voting [26], which essen-

tially corresponds to voting on multi-issue decisions in sequential

order. In this setting, issues are chronologically ordered, i.e., decided

one after the other. The work of Lackner [26] and its follow-up

by Lackner and Maly [27, 28] do not consider strategic issues. Fur-

ther, Bulteau et al. [14] move to a non-sequential (offline) model

of perpetual voting and study proportional representation in this

setting.

A third related formalism is that of public decision making [15].

As in our model, public decision making considers k issues and for

each one alternative has to be chosen. This model is more general

than ours in that it allows arbitrary additive utilities (whereas we

consider only binary utilities, i.e., approval ballots). Our works dif-

fer in that Conitzer et al. [15] focus on fairness properties, whereas

our focus is on strategic aspects. Fairness considerations in pub-

lic decision making have further been explored by Skowron and

Górecki [43]. Note that both papers [15, 43] assume that all issues

are decided in parallel (offline) – in contrast to perpetual voting [26].

Our model is also related to multi-winner voting [20, 31]. The

main difference is that instead of selecting k candidates from the

same set of candidates, we have individual candidates for each

of the k issues. In our paper, we adapt the class of Thiele rules

from the multi-winner setting to ours. This class has been studied

extensively, both axiomatically [4, 30, 39, 40] and computationally

[5, 13, 23, 42]. The concept of free-riding has also been considered

for multi-winner elections [7, 36, 41]. Here, free-riding refers to

“subset-manipulation”, i.e., to submit only a subset of one’s truly

approved candidates. We note that this notion of free-riding is

related to ours in its essence, but technically distinct.

In multi-winner voting, there is also substantial literature on

the relationship between fairness (often proportionality) and strat-

egyproofness, e.g., [17, 25, 29, 34, 36].

Finally, free-riding is a very general phenomenon and has been

widely studied in the economic literature on public goods [24, 38].

It has also been considered in more technical domains, such as

free-riding in memory sharing [21].

2 THE MODEL
As is customary, we write [k] to denote {1, . . . ,k}.

We study a form of multi-issue decision making, where for each

issue there are two or more possible options available. Furthermore,

we assume that for each issue each voter submits an approval ballot,

i.e., a subset of candidates that she likes. Formally, k denotes the

number of issues and C1, . . . ,Ck the respective sets of candidates.

Let N = [n] denote the set of voters. We write Ai (v) ⊆ Ci for the
approval ballot of voter v concerning issue i . In combination, we

call such a triple E = ({Ci }i ∈[k],N , {Ai }i ∈[k ]) an election. If k is

clear from the context, we write C̄ for {Ci }i ∈[k ] and Ā for {Ai }i ∈[k].
An outcome of an election is a k-tuple w̄ = (w1, . . . ,wk ) with

wi ∈ Ci . Given an election E and an outcome w̄ , the satisfaction

of voter v ∈ N with w̄ is satE (v, w̄) = |{1 ≤ i ≤ k : wi ∈ Ai (v)}|
In other words, the satisfaction of a voter is the number of issues

that were decided in this voter’s favour.
1
Furthermore, we write

sE (w̄) = (s1, . . . , sn ) to denote the n-tuple of satisfaction scores

(satE (v, w̄))v ∈N sorted in increasing order, i.e., s1 ≤ s2 ≤ · · · ≤ sn .
If the election E is clear from the context, we omit it in the notation.

There are two main voting rules that have been studied in this

setting: maximizing the total satisfaction and maximizing the satis-

faction of the least satisfied voter.
2

• The utilitarian rule returns an outcome w̄ that maximizes∑
v ∈N sat(v, w̄). This rule corresponds to selecting issue-

wise the candidate with the most approvals.

• The egalitarian rule returns an outcome w̄ that maximizes

minv ∈N sat(v, w̄).

The egalitarian rule is NP-hard to compute [3], while the util-

itarian rule is computable in polynomial time (as one can decide

each issue separately).

The egalitarian rule has the disadvantage that often many out-

comes are optimal in the egalitarian sense. In such cases, it would

be desirable to also pay attention to the second-least satisfied voter,

third-least, etc. This leads to the leximin rule.

• The leximin rule is based on the leximin ordering ≻. Given

two outcomes w̄ and w̄ ′
with s(w̄) = (s1, . . . , sn ) and s(w̄

′) =

(s ′
1
, . . . , s ′n ), w̄ ≻ w̄ ′

if there exists an index j ∈ [n] such that

s1 = s
′
1
, . . . , sj−1 = s

′
j−1

and sj > s ′j . The leximin rule returns

an outcome w̄ that is maximal with respect to ≻.

Example 1. Consider an election with 100 voters and 4 issues with

the same three candidates, {a,b, c}. There are 66 voters that approve
{a} in all issues, 33 voters that approve {b} in all issues, and one voter
approves always {c}. The utilitarian rule selects the outcome w̄1 =

(a,a,a,a) as it achieves a total satisfaction of

∑
v ∈N sat(v, w̄1) = 4 ·

66. The leximin rule selects w̄2 = (a,a,b, c) (or a permutation thereof)

with s(w̄2) = (1, . . . , 1︸  ︷︷  ︸
34 times

, 2, . . . , 2︸  ︷︷  ︸
66 times

). The egalitarian rule can select any

outcome that contains a, b, and c at least once, including the rather
questionable outcome w̄3 = (a,b, c, c) with s(w̄3) = (1, . . . , 1, 2).

1
Note that different notions of satisfaction are possible; for instance, we could assume

that the voters have fine-grained preferences over the issues and the candidates.

However, our simple model is a natural starting point, and we leave the investigation

of different notions of satisfaction as future work.

2
These two voting rules (in the context of binary elections) are referred to as minsum

and minimax by Amanatidis et al. [3]. Note that in the case of binary elections, the

satisfaction of a voter v with w̄ corresponds to k minus the Hamming distance

(symmetric difference) between {i ∈ [k ] : Ai (v) = {1}} and {i ∈ [k ] : wi = 1}. The

minsum rule minimizes the sum of Hamming distances; the minimax rule minimizes

the maximum Hamming distance. This is equivalent to our approach of maximizing

the total or minimum satisfaction.



2.1 Optimization-Based Rules
In the following, we describe two classes of multi-issue voting rules

based on maximizing scores. OWA voting rules for multi-issue

domains were proposed by Amanatidis et al. [3] and are based on

ordered weighted averaging operators [45]. An OWA voting rule is

defined by a set of vectors {αn }n≥1, where each αn = (α1, . . . ,αn )
has length n and satisfies α1 > 0 and α j ≥ 0 for j ∈ [n]. Given an

election with n voters, the score of an outcome w̄ subject to αn is

OWAαn (w̄) = αn · s(w̄),

where · is the scalar (dot) product. The OWA rule returns an out-

come with maximum OWAαn -score. If more than one outcome

achieves the maximum score, we use a fixed tie-breaking order

among outcomes. We typically omit the superscript of αn , as n is

clear from the context.

Note that the utilitarian rule corresponds to αn = (1/n, . . . , 1/n),

the egalitarian rule corresponds to αn = (1, 0, . . . , 0), and the lex-

imin rule to αn = (1, 1/kn, 1/k2n2, . . . ).3

Proposition 1. The OWA rule defined by α = (1, 1

kn ,
1

k2n2
, . . . ) is

equivalent to the leximin rule.

The second class is based on Thiele methods (introduced by

Thiele [44], see the survey by Lackner and Skowron [31]). While

Thiele methods are a class of multi-winner voting rules, they can be

adapted to our setting straightforwardly. A voting rule in the Thiele

class is defined by a function f : N→ R≥0
satisfying f (1) > 0 and

f (i) ≥ f (i + 1) for all i ∈ N. The f -Thiele rule assigns a score of

Thielef (w̄) =
∑
v ∈N

sat(v,w̄ )∑
i=1

f (i)

to an outcome w̄ and returns an outcome with maximum score.

Intuitively, these are weighted approval rules for which the weight

assigned to each voter only depends on her satisfaction. Note that

the utilitarian rule corresponds to f
util

(i) = 1. The egalitarian and

leximin rules do not appear in this class.
4
Another important Thiele

rule is f (i) = 1/i , which is called Proportional Approval Voting in

the multi-winner setting. We also refer to this Thiele rule as PAV.

Example 2. Continuing with the election of Example 1, we see

that PAV selects w̄4 = (a,a,a,b) (or a permutation thereof) with

ThielePAV(w̄4) = 66+33+22+33. Note that PAV is more majoritarian

than leximin as it essentially ignores the single {c}-voter.

2.2 Sequential Rules
We also consider sequential variants of both the OWA and Thiele

classes. Sequential rules construct the outcome in rounds, one is-

sue after the other. To define them, we require an ordering over

issues. In this paper, we make no assumptions about the origin of

these orderings, but a natural order may follow from time (issues

are decided at different points in time)
5
or importance (important

decisions are made first). The advantage of sequential rules is that

they are computable in polynomial time. They can be viewed as

approximation algorithms of their optimization-based counterparts.

3
This definition requires the assumption of a fixed number of issues k .

4
However, if we fix n and k , leximin can be “simulated” by, e.g., flex (i) = 1/(kn)i−1

.

5
This corresponds to the model of perpetual voting [26], where a sequence of collective

decisions has to be made at different points in time.

To formally define sequential rules, we assume that issues are

decided in order 1, . . . ,k . The sequential α-OWA rule is defined

as follows: Ifw1, . . . ,wi−1 are already selected for issues 1, . . . , i −
1, then we select for issue i a candidate c ∈ Ci that maximizes

OWAα (w1, . . . ,wi−1, c). This is repeated until all issues have been

decided. Similarly, for sequential f -Thiele we iteratively choose for

issue i a candidate c ∈ Ci that maximizesThielef (w1, . . . ,wi−1, c).

2.3 Free-Riding
In this paper, we study a specific form of strategic manipulation

called free-riding. Intuitively, this means that a voter misrepresents

her preferences on an issue where her favourite candidate wins also

without her support. If the used voting rule takes the satisfaction

of voters into account (as most OWA and Thiele methods do), such

a manipulation can increase the voter’s influence on other issues.

Example 3. Consider an election with three voters and two issues.

The first issue is uncontroversial: all voters approve candidate a. The
second issue is highly controversial: all voters approve different can-

didates (A2(1) = {x}, A2(2) = {y}, A2(3) = {z}). If the egalitarian
rule (with some tie-breaking) is used to determine the outcome, it

could select, e.g., the outcome (a,x). This leaves voters 2 and 3 less

satisfied than voter 1. Both of them could free-ride to improve their

satisfaction. Consider voter 2. If voter 2 changes her ballot on the first

issue to another candidate, the outcome changes to (a,y) as it gives all
voters a satisfaction of 1 (according to their ballots). As voter 2’s true

preferences are positive towards a, this manipulation was successful.

In the following, given an election E and a rule R such that

R(E) = (w1, . . . ,wk ), we indicatewi as R(E)i .

Definition 1. Consider an election E = ({Ci }i ∈[k ],N , {Ai }i ∈[k]),
a voter v ∈ N and a voting rule R. Let R(E) = (w1, . . . ,wk ). We say

that voter v can free-ride in election E on issues I ⊆ [k] if there exists
another election E∗ = ({Ci }i ∈[k ],N , {A

∗
i }i ∈[k]) that only differs from

E in the approvals of v for issues in I such that, for all i ∈ I , wi ∈

Ai (v),wi < A
∗
i (v) and R(E∗)i = wi . In this case, we also say that v

can free-ride in E via E∗
.

Usually, we say a voter can manipulate if she can achieve a

higher satisfaction by misrepresenting her preferences. In contrast,

Definition 1 makes no assumptions about the satisfaction of the

free-riding voter. Instead, we only require that the manipulator

can misrepresent her preference in an issue without changing the

outcome of the issue. This might lead to the same, a higher or lower

satisfaction for the manipulator. This distinction will be crucial

when talking about the risk of free-riding.

We will also sometimes consider a more general notion of free-

riding. Here, we lift the constraint that the outcome on the issues

where free-riding occurs remains exactly the same. We just require

that the new winning candidate is still (truthfully) approved by

the manipulator. At its core, generalized free-riding is based on the

assumption that voters are indifferent between approved candidates.

To define generalized free-riding formally, we replace R(E∗)i = wi
in Definition 1 with R(E∗)i ∈ Ai (v).

Finally, we say that a voting rule R can be manipulated by (gen-

eralized) free-riding if there exists an election E, a voter v and an

election E∗
such that v can perform (generalized) free-riding in E

via E∗
and satE (v,R(E)) < satE (v,R(E

∗)).



3 POSSIBILITY AND RISK OF FREE-RIDING
In this section, we study for which voting rules free-riding is possi-

ble and under which conditions it is safe (in the sense that it cannot

lead to a decrease in the satisfaction of the free-riding voter). Firstly,

we observe that the results for different issues do not influence each

other for the utilitarian rule, hence free-riding on one issue has no

effect on the outcome of other issues. Therefore, the utilitarian rule

cannot be manipulated by (generalized) free-riding.

Proposition 2. The utilitarian rule cannot be manipulated by (gen-

eralized) free-riding.

However, it turns out that every other rule in the classes we

study can be manipulated by free-riding.

Theorem 3. Every (sequential) Thiele and (sequential) OWA rule

except the utilitarian rule can be manipulated by free-riding.

Proof. Let R be an OWA-Rule that is not the utilitarian rule.

Then there exists a k for which the vector α for k voters satisfies

α1 > αk . Clearly, k ≥ 2. Consider an election with 2 issues and k
voters. In each issue there are k candidates a1, . . . ak . In the first

issue, voters 1 and 2 approve a1. Every other voter i ∈ {3, . . . ,k} ap-
proves ai . In the second issue voter 1 approves a1, voter 2 approves

a2 and all other voters approve both a1 and a2. We assume that can-

didates with a lower index are preferred by the tie-breaking, which

is applied lexicographically. Selecting a candidate other than a1 in

the first issue leads to satisfaction vector (0, 1, . . . , 1, 2), indepen-

dently of whether a1 or a2 is selected in issue 2. On the other hand,

selecting a1 in issue 1 leads to satisfaction vector (1, 1, . . . , 1, 2),

independently of whether a1 or a2 is selected in issue 2. This means

(a1,a1) and (a1,a2) lead to the highest OWA score. By tie-breaking,

(a1,a1)wins. Now, we claim that voter 2 can free-ride by approving

a2 instead of a1 in the first issue. Assume first, that a candidate

other than a1 or a2 is selected in the first issue. This still leads to

the same satisfaction vector independently of whether a1 or a2 is

selected in issue 2. However choosing a1 in both issues now leads

to the vector (0, 1, . . . , 1, 2). Choosing a1 in issue 1 and a2 in issue 2

leads satisfaction 1 for every voter. Choosing a2 both times or first

a2 and then a1 is symmetric. As α1 > αk we know that

α · (1, . . . , 1) =

k∑
i=1

αi > αk − α1 +

k∑
i=1

αi = α · (0, 1, . . . , 1, 2)

It follows that (a1,a2) and (a2,a1) are the outcomes maximizing

the OWA score. By tie-breaking, (a1,a2) is the winning outcome. It

follows that voter 2 did successfully free-ride.

The proofs for sequential OWA and (sequential) Thiele rules are

similar. Details can be found in the full version of the paper. □

Hence, free-riding is essentially unavoidable if we want to guar-

antee fairer outcomes using Thiele or OWA rules. Intuitively, free-

riding seems to offer a simple and risk-free way to manipulate. And

indeed, it is risk-free for some voting rules, such as the leximin rule.

Proposition 4. Free-riding cannot reduce the satisfaction of the

free-riding voter when the leximin rule is used, but it can increase the

satisfaction of the free-riding voter.

Proof. It follows directly from Theorem 3 that free-riding can

increase the satisfaction of the free-riding voter. Let us show that it

can never decrease the satisfaction of the free-riding voter. Let E

be an election, w̄ be the outcome of E under the leximin rule, and

consider a voter v∗ such that v∗ can free-ride in issue k . Finally,
let E∗

be the election after v∗ free-rides and w̄∗
the outcome of E∗

under the leximin rule. In the following we write N E
i (w̄) = {v ∈

N | satE (v, w̄) = i}. Now, asv∗ free-rides, i.e., the winner in issue k
is the same in w̄ and w̄∗

, we know that v∗ approves the winner of
issue k in her honest ballot in E and does not approve the winner

of issue k in her free-riding ballot in E∗
. It follows the satisfaction

of v∗ with w̄∗
resp. w̄ in E is higher by one than in E∗

, i.e.,

satE∗ (v∗, w̄∗) = satE (v
∗, w̄∗) − 1 as well as

satE∗ (v∗, w̄) = satE (v
∗, w̄) − 1. (1)

All other voters submit the same ballot in E and E∗
. Hence, for all

v , v∗ we have

satE∗ (v, w̄∗) = satE (v, w̄
∗) as well as

satE∗ (v, w̄) = satE (v, w̄). (2)

Now assume for the sake of a contradiction that satE (v
∗, w̄) >

satE (v
∗, w̄∗), i.e., free-riding led to a lower satisfaction for v∗ with

respect to her honest ballot.

As w̄∗
is the winning outcome of E∗

, we know that w̄∗ ≻ w̄
according to the leximin order in E∗

. In other words, there is a j

such that |N E∗

j (w̄∗)| < |N E∗

j (w̄)| and |N E∗

ℓ
(w̄∗)| = |N E∗

ℓ
(w̄)| for

all ℓ < j. We claim that the deciding index j cannot be smaller

than satE∗ (v∗, w̄∗) as for all smaller indices ℓ < satE∗ (v∗, w̄∗) it

follows from satE (v
∗, w̄) > satE (v

∗, w̄∗) that v∗ is not in N E
ℓ
(w̄∗),

N E∗

ℓ
(w̄∗), N E

ℓ
(w̄) and N E∗

ℓ
(w̄). Therefore, it follows from (2) that

|N E
ℓ
(w̄∗)| = |N E∗

ℓ
(w̄∗)| and |N E

ℓ
(w̄)| = |N E∗

ℓ
(w̄)|. Hence, j <

satE∗ (v∗, w̄∗) would be a contradiction to the assumption that w̄ is

the leximin outcome of E and hence leximin preferred to w̄∗
in E.

Therefore, we know that |N E∗

ℓ
(w̄∗)| = |N E∗

ℓ
(w̄)| for all ℓ <

satE∗ (v∗, w̄∗) ≤ j and

|N E∗

satE∗ (v∗,w̄∗)
(w̄∗)| ≤ |N E∗

satE∗ (v∗,w̄∗)
(w̄)|.

It follows that also |N E
ℓ
(w̄∗)| = |N E∗

ℓ
(w̄∗)| = |N E∗

ℓ
(w̄)| = |N E

ℓ
(w̄)|

for all ℓ < satE∗ (v∗, w̄∗) ≤ j. Finally, it follows from (1) that v∗

is in N E∗

satE∗ (v∗,w̄∗)
(w̄∗) but not in N E

satE∗ (v∗,w̄∗)
(w̄∗). Moreover, be-

cause we assumed satE (v
∗, w̄) > satE (v

∗, w̄∗), v∗ is neither in

N E∗

satE∗ (v∗,w̄∗)
(w̄) nor in N E

satE∗ (v∗,w̄∗)
(w̄). Therefore, we have

|N E
satE∗ (v∗,w̄∗)

(w̄∗)| + 1 = |N E∗

satE∗ (v∗,w̄∗)
(w̄∗)| ≤

|N E∗

satE∗ (v∗,w̄∗)
(w̄)| = |N E

satE∗ (v∗,w̄∗)
(w̄)|.

However, that means that w̄∗
is leximin preferred to w̄ in E, which

is a contradiction to the assumption that w̄ is the outcome of E. □

It remains an open problem to generalize this result to other

rules based on global optimization. However, we observe that for

most sequential voting rules, free-riding may lead to a decrease in

satisfaction. First, we can show that this holds for all sequential

Thiele rules, except the utilitarian rule.

Proposition 5. Let f : N→ R≥0
be a function for which there is an

i ∈ N such that f (i) > f (i + 1). Then, under the sequential f -Thiele
rule, free-riding can reduce the satisfaction of the free-riding voter.



Proof. Consider a sequential f -Thiele rule such that f (i) >
f (i + 1) and consider the following election with nine voters, i + 4

issues and candidates a, . . . ,д for all issues. We assume alphabetic

tie-breaking. The approvals for each issue are given by these tuples:

A1 = · · · = Ai−1 = ({a}, {a}, {a}, {a}, {a}, {a}, {a}, {a}, {a})

Ai = ({a}, {a}, {a}, {b}, {b}, {c}, {d}, {e}, { f })

Ai+1 = ({b}, {a}, {c}, {b}, {b}, {a}, {a}, {a}, {b})

Ai+2 = ({b}, {a}, {c}, {b}, {e}, {a}, { f }, {a,b}, {д})

Ai+3 = ({b}, {c}, {d}, {e}, {b}, { f }, {a}, {a}, {д})

Then, {a} is clearly the winner for the first i − 1 issues. Thus, all

voters have a satisfaction of i − 1 before issue i and a wins on issue

i as it has the most supporters. In issue i + 1, a and b increase the

Thiele score by f (i + 1) + 3f (i), while c increases the score only
by f (i + 1). By tie-breaking, a wins again. Then, in issue i + 2, a
increases the score by f (i+2)+2f (i+1), b by f (i)+2f (i+1), while

all other candidates by at most f (i). As f (i) > f (i + 1) ≥ f (i + 2)

(together with the tie-breaking rule if f (i + 1) = 0), it follows that

b wins in issue i + 2. Finally, in issue i + 3, a increases the score

by f (i + 1) + f (i + 2), b by f (i) + f (i + 2) and all other candidates

increase the score by at most f (i). Hence b wins.

Now assume voter 1 changes her preferences and free-rides in

issue i . It is straightforward to check that a remains the winner for

issue i , but winner in issue i + 1 changes to b while a now wins

for issue i + 2 and i + 3. Therefore, 1 now additionally approves

of the winner on issue i + 1 but does not approve the winners of

issues i + 2 and i + 3 any more. Hence, free-riding led to a lower

satisfaction for the free-riding voter. □

The same holds for the following large class of sequential OWA

rules, as well as the sequential egalitarian rule.

Proposition 6. Consider a sequential α-OWA rule such that there

exists an n ≥ 8 for which αn is nonincreasing and satisfies α3 > αn−2.

Then, free-riding can reduce the satisfaction of the free-riding voter.

Proposition 7. Free-riding can decrease the satisfaction of the free-

riding voter under the sequential egalitarian rule.

4 COMPUTATIONAL COMPLEXITY
In this section, we will study the computational complexity of

free-riding. Overall, we will show that it is generally hard to do

so. The reason for computational hardness, however, is a different

one for optimization-based rules and for sequential rules. Observe

that, due to the performance of, e.g., modern SAT- or ILP-solvers,

computational hardness (in particular NP-completeness) cannot

be seen as an unbreakable defense against manipulation. However,

the main appeal of free-riding is its simplicity. A manipulator that

is able to solve computationally hard problems has no benefit from

restricting the potential manipulation to free-riding.

4.1 Free-Riding in Optimization-Based Rules
In this section, we study the computational complexity of free-

riding for optimization-based rules. As our goal is to show that

free-riding is hard, we start from a more fundamental problem:

outcome determination. Indeed, any hypothetical free-rider needs

to decide if, by voting dishonestly, the outcome would be better

than the “truthful” outcome. To do so, she must be able to determine

the outcome of an election. If this step turns out to be intractable,

then we already have a computational barrier against free-riding.

Hence, we study the following problem:

R-Outcome Determination

Input: An election E = (N , Ā, C̄), an issue i and a candi-

date c ∈ Ci .
Question: Does c win in issue i under R?

In the following, we assume that for all f -Thiele rules, f is poly-

time computable.
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Similarly, we assume that, for a given α-OWA

rule and n voters, we can retrieve αn in polynomial time. Now, we

show that outcome determination is hard for both families of rules.

Theorem 8. R-Outcome Determination is NP-hard for every f -
Thiele rule distinct from the utilitarian rule.

Theorem 9. R-Outcome Determination is NP-hard for every α-
OWA rule such that, for all n, αn is nonincreasing and α1 > αn .

Proof (Sketch). Fix a rule R satisfying the condition of the the-

orem. We show hardness by a reduction from CubicVertexCover,

a variant of VertexCover where every node has a degree of ex-

actly three [2]. Consider an instance (G,k) of this problem. Here,

G = (V ,E) is a graph with n nodes andm edges where each node

has a degree of exactly three, and k ∈ N. We assume w.l.o.g. that

k < n. We construct an instance of R-Outcome Determination

with (k + 1) issues and 3m voters. As α1 > α3m , there are two cases:

(1) There is a p ∈ [2m] such that αp > αp+1, or

(2) There is a p > 2m with p < 3m such that α1 = αp > αp+1.

We sketch the proof for the first case. The full proof can be found

in the full version of the paper. We construct an instance (E,k +
1, cd1

) of R-Outcome Determination. Here, we have one voter

ve for each edge e ∈ E, and two sets of dummy voters, {d1, . . . ,dp }
and {w1, . . . ,w2m−p }. In the first k issues, there is one candidate

cη for each node η ∈ V , plus one dummy candidate cdi for each
dummy voterdi . Here, each edge-voterve approves of the two node-
candidatesvη andvη′ such that e = {η,η′}. Moreover, each dummy

voter di approves only of dummy candidate cdi , and all dummy

candidateswi approve of all candidates. In the last issue, there is

one candidate cv for all voters v ∈ N \ {wi }i ∈[2m−p], and every

suchv only approves of cv . Finally, here, all voters in {wi }i ∈[2m−p]
approve of all candidates.

The tie-breaking is defined as follows. We assume that each issue

i is associated with a total ordering ≻i such that:

(1) If i ∈ {1, . . . ,k}, then node-candidates are preferred over

other candidates, and cdn ≻i · · · ≻i cd1
;

(2) If i = k + 1, then all candidates cve (with e ∈ E) are preferred
over other candidates, and cd1

≻i · · · ≻i cdn ;

We compare outcomes w̄ and w̄ ′
lexicographically, starting with

issue 1. We want to show that (G,k) is a yes-instance if and only

if (E,k + 1, cd1
) is. Suppose that there exists a vertex cover for G

with size at most k . Then, it can be shown that all edge-voters

must win at least one issue in [k], as increasing the satisfaction of a

voter from 0 to 1 increases the OWA score more than increasing the

6
This is justified by the fact that all relevant values of f can be computed ahead of

time and stored in a look-up table.



satisfaction of a voter that has already positive satisfaction and edge

voters are preferred in the tie-breaking. Let us show that cd1
wins

in k + 1 if all edge-voters win at least once in issue in [k]. If voter
d1 never won an issue in [k], then it means she has a satisfaction

of 0. Since all edge-voters and all the wi won at least once, there

are at leastm + 2m − p = 3m − p voters with a satisfaction of at

least 1. Therefore, d1 occupies a position within the first p entries

of the satisfaction vector, whereas all edge-voters occupy a position

within the last 4m−p entries. Since αp > αp+1, in this case choosing

in issue k+1 candidate cd1
will yield a greater score than choosing a

voter-candidate cve for any edge e ∈ E. Finally, since cd1
dominates

in the tie-breaking every other candidate cdj in issue k + 1, here we

must choose cd1
. On the other hand, suppose that d1 wins at least

one issue i ∈ [k]. Suppose – towards a contradiction – that cd1
is not

selected in issue k + 1. Let cv (for some voter v ∈ N \ {wi }i ∈[2m−p]
distinct from d1) be the candidate winning issue k + 1. Observe that

if we make cd1
win in issue k+1 and make some candidate approved

by v win in issue i , we would obtain a score that is higher or equal

than before, and this would surely be preferred by tie-breaking:

contradiction. We conclude that cd1
must win in the final issue.

Now, suppose that there exists no vertex cover forG with size at

most k . Then, there is one edge-voter that never wins an issue in

[k] (otherwise, some vertex cover would exist). By tie-breaking, this

edge-voter would decide the last issue, i.e., cd1
would not win. □

In light of this, one could conclude that free-riding is unfeasible

for optimization-based rules. Still, one could argue – especially since

we use worst-case complexity analysis – that sometimes the fact

that a certain candidate wins can still be known (or guessed). For

example, when a candidate receives an extremely disproportionate

support, or when some external source (i.e., a polling agency having

the computational power to solve R-Outcome Determination)

communicates the projected winners. In this case, the manipulator

would need to solve a slightly different, potentially easier, problem:

Given that some candidate that I approve of wins in this specific issue,

can I deviate from my honest approval ballot, without making this

candidate lose? Motivated by this, we study the following problem:

R-Free-Riding Recognition

Input: An election E = (N , Ā, C̄), an issue i , a candidate
c ∈ Ci such that c ∈ R(E)i , and a voterv such that

c ∈ Ai (v).
Question: Can v free-ride in E on issue i?

We define Generalized R-Free-Riding Recognition analo-

gously. Luckily, the picture does not change: this problem is still

computationally hard for essentially the same families of rules.

Theorem 10. (Generalized) R-Free-Riding Recognition is NP-
hard for every f -Thiele rule distinct from the utilitarian rule.

Theorem 11. (Generalized) R-Free-Riding Recognition is NP-
hard for every α-OWA rule for which there is a c ≥ 3 such that,

for every n ∈ N, there is a nonincreasing vector α of size ℓ (with

3n ≤ ℓ ≤ cn) such that α1 > αℓ and α3n > 0.

Proof. We show hardness by a reduction from CubicVertex-

Cover. Consider an instance (G,k) of this problem. Here,G = (V ,E)
is a graph with n nodes andm edges where each node has a degree

of exactly three, and k ∈ N. By the condition of the theorem, we

know there is an ℓ ≥ 3m (polynomial in the size ofm) such that

α = (α1, . . . ,αℓ) contains at least 3m non-zero entries and α1 > αℓ .
We will construct an instance of R-Free-Riding Recognitionwith

(k + 1) issues and ℓ voters. Since α1 > αℓ , we can distinguish essen-

tially the same two cases as in the proof of Theorem 9. We treat here

the first case. The second case and the treatment of the generalized

problem are similar, and a full proof can be found in the full version

of the paper.

We construct an instance (E,k + 1,ve∗ , cd1
) of R-Free-Riding

Recognition (here, e∗ ∈ E is some edge, it does not matter which).

The construction is similar to the one shown in the first case of the

proof of Theorem 9. However, here, in issue k+1 voterve∗ approves
only of cd1

, and we have ℓ −m − p dummy voters wi instead of

3m − p. The latter change makes no difference in our construction.

First, note that (E,k + 1,ve∗ , cd1
) is indeed a legal instance of

R-Free-Riding Recognition, as surely cd1
wins in issue k + 1.

If (G,k) is a yes-instance then we have already shown that this

candidate wins, and here it is only receiving increased support. If

it is a no-instance, then cd1
will be supported by one voter that

never won in the first k issues (namely, d1), as well as by ve∗ . Since
αp+m ≥ α3m > 0 and since the edge-voters together with the

dummy voters di occupy at most the first p +m positions of the

satisfaction vector, ve∗ will break the tie in favour of cd1
.

Now, if (G,k) is a yes-instance of CubicVertexCover, then ve∗

can free-ride in the last issue: if she votes for her voter-candidate,

then we have an election identical to the one constructed in the

first case of the proof of Theorem 9, and we have already shown

there that cd1
wins if (G,k) has a vertex cover.

If (G,k) is a no-instance, then there are two cases: either ve∗

won in some issue in [k] or not. If she did, there will be at least one
voter ve (with e ∈ E \ {e∗}) that never did, whose voter-candidate
will get at least the same score as cd1

(since ve∗ does not approve
of the latter when she free-rides): cd1

cannot win here. If she did

not, there are again two cases: either ve∗ approves of some dummy

candidate cdi (with i > 1) or of some cve (where e ∈ E). In the first

case, cdi would get a strictly higher score than cd1
, while in the

second case cve would get at least the same score as cd1
(and win by

tie-breaking). In all cases, cd1
loses: no free-riding is possible. □

Theorem12. (Generalized)R-Free-Riding Recognition is coNP-
hard for every α-OWA rule for which there is a c ≥ 2 such that,

for every n ∈ N, there is a nonincreasing vector α of size ℓ (with

n < ℓ ≤ cn) such that α1 > αℓ and αℓ−n+1
= 0.

Theorems 10, 11 and 12 strengthen our previous observations.We

conclude that free-riding is generally unfeasible for optimization-

based rules, since the manipulator cannot even decide efficiently

whether free-riding is possible. Next, we tackle sequential rules.

4.2 Free-Riding in Sequential Rules
In this section, we study the complexity of free-riding for sequen-

tial rules. First of all, observe that the computational barriers we

exhibited in the previous section are not applicable here. Indeed,

the outcome of a sequential rule is always poly-time computable:

for every round, we can just iterate over all the candidates involved

in that issue and pick the one maximizing the score up to that point.



However, although voters can easily verify if free-riding is pos-

sible, it might be still hard to judge its long-term consequences. If

this is unfeasible, voters might be discouraged from free-riding (as

it can have negative consequences). Hence, we study the following:

R-Free-Riding

Input: An election E = (N , Ā, C̄) and a voter v ∈ N .

Question: Is there an election E∗
such that v can free-ride in

E via E∗
and satE (v,R(E)) < satE (v,R(E

∗))?

The problem of Generalized R-Free-Riding is defined analo-

gously. Now, we show that free-riding is NP-complete for a large

class of sequential f -Thiele rules and the egalitarian rule.

Theorem 13. R-Free-Riding is NP-complete for every sequential f -
Thiele rule for which there exists a ℓ ∈ N such that (i) for all j, j ′ ∈ [ℓ]

it holds f (j) = f (j ′) and (ii) f is strictly decreasing on N \ [ℓ − 1].

The conditions of Theorem 13 apply to all functions that are

constant up to a certain number ℓ, and from ℓ on become strictly

decreasing. This is the case, e.g., for the sequential PAV rule.

Theorem 14. R-Free-Riding is NP-complete for the sequential egal-

itarian rule.

Proof (Sketch). Membership is clear. To show hardness, we

reduce from 3-SAT [22] and sketch the proof of its correctness. The

full proof can be found in the full version of the paper.

Let ϕ be a 3-CNF with n variables and m clauses. We assume

w.l.o.g. that ϕ is not satisfied by setting all variables to false and

that each clause Cj contains exactly three literals. We construct an

instance of R-Free-Riding with 2(n + 1) voters and 5n + 1 rounds.

In particular, we will have two voters vi and v̄i for each variable

xi , a voter u, and a distinguished voter v , the manipulator.

In all rounds except for 5n + 1, there are two candidates, c and
c̄ . We assume that c always loses in ties (also in the final round).

We group the first 4n rounds into n quadruples, e.g., quadruple 1

consists of rounds (1, 2, 3, 4). In the first round of any such quadruple

i , all voters approve of c̄ . In the second round of i , voters v and v̄i
vote for c , while voters u and vi vote for c̄ ; everyone else approves
of both. In the third round of i , voters v and u approve of c and c̄ ,
respectively, and everyone else approves of both. In the final round

of i , voter v votes for both c and c̄ , while everyone else votes for
c . Next, in all rounds from 4n + 1 to 5n − 1, v approves of c̄ , u of

both candidates, and everyone else of c . In round 5n, v votes for c̄ ,
whereas every one else votes for c . Finally, in round 5n + 1, there

arem + 1 candidates, namely c, c1, . . . , c j . Here, u approves of all

candidates, voter vi (resp. v̄i ) approves of c and of all candidates c j
such that xi < Cj (resp. x̄i < Cj ). Finally, voter v approves only of c .

We show correctness as follows. First, we observe that v can

free-ride only in the first round of every quadruple: everywhere

else, either she is losing, or her vote changes the outcome. Secondly,

in all quadruples, if v votes truthfully in the first round, c and c̄
win the second and third rounds, respectively; if she free-rides, the

opposite happens. Note that, regardless of whether v free-rides or

not, she will be satisfied with three rounds per quadruple (w.r.t.

her honest preferences), and she will win as many rounds as u.
Next, let ℓ be the (calculated) satisfaction of v and u after round 4n.
We can show that, for all pairs of voters vi and v̄i , one voter won
s := ℓ + n − 1 rounds, while the other won s + 1 rounds, depending

on whether c or c̄ wins in the second round of quadruple i . Then,
one can show that in all rounds from 4n + 1 to 5n − 1 only v and u
win, and only v wins in round 5n. Hence, before round 5n + 1, all

voters have satisfaction either s (including u) or s + 1 (including v).
We can interpret c winning in the second round of quadruple i

as setting xi to true. Crucially, voter vi (resp. v̄i ) has satisfaction
s + 1 if c̄ (resp. c) wins there, and s otherwise. We claim that c wins
round 5n + 1 iff this assignment satisfies ϕ. Briefly, if a clause Cj
contains at least one satisfied literal, the minimal satisfaction if c j
wins would be s; otherwise, it would be s + 1. Since c also gives a

minimal satisfaction of s + 1 and loses all ties, our claim follows.

Finally, observe that the (true) satisfaction of v from the first

5n rounds is exactly 4n, irrespectively of whether she free-rides

or not. If v never free-rides, c̄ wins in the second round of every

quadruple, and since we assumed thatϕ is not satisfied by setting all

variables to false,v loses the last round. Hence,v can only raise her

satisfaction to 4n+ 1 by winning the last round. To do so, she needs

to force a satisfying assignment for ϕ by free-riding. It follows that

ϕ is satisfiable if and only if v can manipulate via free-riding. □

We now consider the weaker notion of generalized free-riding.

With this, we prove NP-completeness for a broader class of rules.

Theorem15. GeneralizedR-Free-Riding isNP-complete for every

sequential f -Thiele rule distinct from the utilitarian rule such that

f (i) > 0 holds for every i ∈ N.

Theorem 16. Generalized R-Free-Riding is NP-complete for ev-

ery sequential α-OWA rule such that, for all n, α = (α1, . . . ,αn ) is
nonincreasing and α1 > αn .

5 NUMERICAL SIMULATIONS
So far, we have seen that sequential Thiele and OWA rules are

generally susceptible to free-riding. However, we have seen that

free-riding can be detrimental to the free-rider, i.e., her satisfaction

can decrease. In this section, we use numerical simulations to shed

more light on the risk of free-riding with sequential rules.

We use the following setup. We assume that voters and can-

didates are points in a 2-dimensional space; this is known as the

2d-Euclidean model [10, 18, 19, 23]. We sample both candidates

and voters from a uniform distribution on a unit square. Voters’

points are the same for all issues, candidates are sampled separately

for each issue. A voter approves the closest candidate as well as

any candidate that is similarly close (within +20% distance). We

consider multi-issue elections with n = 20 voters, k = 20 issues,

and 4 candidates per issue. Our results are based on 1000 elections.

In our experiments, we consider a subclass of Thiele methods and

a subclass of OWA rules. For better comparison, we parameterize

both classes with a parameter x (albeit this parameter has a different

interpretation in both classes). We consider f -Thiele rules with

fx (i) = i
−x

for x ∈ {0, 0.25, 0.5, . . . }. Note that for x = 0 this is the

utilitarian rule, for x = 1 it is PAV, and for increasing x it approaches

the leximin rule. Further, we consider α-OWA rules with

αx = ( 1, . . . , 1︸  ︷︷  ︸
n−x many

,
1

kn
,

1

k2n2
, . . . ) for x ∈ {0, 1, 2, . . . }.

Note that also this class contains the utilitarian rule (x = 0) and the

leximin rule (x = n − 1).
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Figure 1: Results of the numerical simulations.

Within this model, we answer three questions: (Q1) How many

voters have the possibility to increase their satisfaction by free-

riding? (Q2) For how many voters can free-riding lead to a worse

outcome? (Q3) What is the average risk of free-riding? Let us make

these three questions precise. For each multi-issue election, we

iterate over all voters and all issues and check whether free-riding

is possible (Definition 1). That is, we only consider free-riding in

single issues (and not repeated free-riding in more than one issue).

Note that for a fixed occurrence of free-riding (i.e., in a specific

issue, by a specific voter) it is computationally easy to determine the

outcome when using sequential Thiele or sequential OWA rules.

Given an election, a voter, and an issue, we speak of successful

free-riding if the voter can free-ride and this increases her satisfac-

tion; we speak of harmful free-riding if the voter can free-ride but

this decreases her satisfaction. Note that free-riding can also be

neutral (with no change in satisfaction).

Figure 1 shows our results. We answer Q1 by displaying the

proportion of voters with the possibility of successful free-riding

(in at least one issue), averaged over all elections. Analogously,

Q2 corresponds to the proportion of voters with the possibility of

harmful free-riding (in at least one issue), averaged over all elections.

We note that voters can have both the possibility of successful and

harmful free-riding (on separate issues). Finally, for Q3, we define

the risk of a voter in an election as the number of issues where

harmful free-riding occurs divided by the number of issues where

either successful or harmful free-riding occurs. Figure 1 shows

the risk averaged over all voters (for whom successful or harmful

free-riding is possible) and over all elections.

Let us discuss Figure 1. We clearly see that rules closer to the

utilitarian rule (x = 0) are less susceptible to free-riding than those

closer to leximin (larger values of x ). We also see that – as expected

– the utilitarian rule is the only rule where free-riding is not possible

(cf. Proposition 2). We note that this increase in susceptibility (with

distance to the utilitarian rule) has also been observed by Barrot

et al. [6] for arbitrary manipulations. Both the proportion of voters

that can successfully free-ride and those with the possibility of

harmful free-riding grow with parameter x . The most important

conclusion from this experiment is that the risk of free-riding is

considerable (3.7% for sequential PAV, 17.2% for sequential leximin).

This shows that harmful free-riding is not merely a theoretical

possibility, but might be a phenomenon that indeed decreases the

temptation of free-riding.

Finally, we briefly describe the impact of our chosen model pa-

rameters. Increasing the number of voters decreases the chance

of voters being pivotal. Consequently, we would see a decrease in

both successful and harmful free-riding. For a larger number of

voters, it would make sense to move to a model where groups of

voters free-ride. This requires additional assumptions about voter

coordination (cf. the framework of iterative voting [35]). Varying

the number of candidates leads to comparable results. Increasing

the number of issues significantly increases the possibility of both

successful and harmful free-riding, as effects may materialize only

in the long run. In general, further simulations indicate that the

general pervasiveness of harmful free-riding does not depend on

our chosen parameter values.

6 DISCUSSION AND RESEARCH DIRECTIONS
We have seen that free-riding is an essentially unavoidable phe-

nomenon in multi-issue voting (Theorem 3). However, we have also

shown that there are computational issues to overcome for voters

that would like to assess the consequences of free-riding. In partic-

ular for sequential voting rules, we have observed the possibility

of negative outcomes for free-riders. Numerical simulations show

that the frequency of harmful free-riding is non-negligible. This led

us to the conclusion that it is less obvious how and when to free-

ride than it seems at first sight. Another detriment to free-riding

comes from the social context. In small groups, it may be obvious

to other group members that free-riding takes place and thus can

entail negative social consequences. Consequently, free-riding in

real-world applications of multi-issue decision making may be less

relevant than the theoretical possibility would suggest.

We conclude this paper with specific technical open problems.

First, we would like to point out that many of our hardness proofs

use several candidates per issue. Do all of these results still hold

for binary elections? Second, our classification of sequential OWA

rules with potentially harmful free-riding is not complete. Are there

sequential OWA rules where free-riding is never harmful except for

the utilitarian rule? Third, all our results apply to resolute rules, i.e.,

rules returning exactly one outcome. This condition can be lifted

by introducing set extensions for comparing sets of outcomes (as

done by Barrot et al. [6]). Would this change affect our conclusions?

Finally, there are further voting rules to be considered, such as rules

based on Phragmén’s ideas [12, 37].
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