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Abstract. For agents it can be advantageous to vote insincerely in order
to change the outcome of an election. This behavior is called manipula-
tion. The Gibbard-Satterthwaite theorem states that in principle every
non-trivial voting rule with at least three candidates is susceptible to
manipulation. Since the seminal paper by Bartholdi, Tovey, and Trick
in 1989, (coalitional) manipulation has been shown NP-hard for many
voting rules. However, under single-peaked preferences – one of the most
influential domain restrictions – the complexity of manipulation often
drops from NP-hard to P.
In this paper, we investigate the complexity of manipulation for the
k-approval and veto families of voting rules in nearly single-peaked elec-
tions, exploring the limits where the manipulation problem turns from
P to NP-hard. Compared to the classical notion of single-peakedness,
notions of nearly single-peakedness are more robust and thus more likely
to appear in real-world data sets.

1 Introduction

Elections are a useful framework for preference aggregation with many applica-
tions in both human societies and in multiagent systems. Well-known examples
are political elections in human societies and the design of recommender sys-
tems [16], planning [10], and machine learning [22] in multiagent systems, just
to name a few.

Informally, an election is given by a set of candidates and a set of voters
who have to express their preferences over the set of candidates. A voting rule
describes how to aggregate the voters’ preferences in order to determine the win-
ners of a given election. In computational social choice, a central research topic
is to study computational questions regarding insincere behavior in elections. A
prominent example is coalitional manipulation. Coalitional manipulation deals
with situations in which a group of voters casts their votes strategically in order
to alter the outcome of an election. (If the coalition has size one, the problem
is called single manipulation). The famous Gibbard-Satterthwaite theorem says
that, in principle, every reasonable voting rule for at least three candidates is
susceptible to manipulation [17, 20].



Manipulability is considered to be an undesirable property for a voting rule.
In their seminal paper Bartholdi, Tovey, and Trick suggested that although vot-
ing rules are manipulable, the manipulator’s task of successfully manipulating
the election can still be computationally hard, i.e., NP-hard [1]. Indeed, since
the paper by Bartholdi, Tovey, and Trick, (coalitional) manipulation has been
shown NP-hard for many voting rules.

In contrast, under domain restrictions, the computational complexity of ma-
nipulation drops from NP-hard to P for many voting rules. One popular model
of domain restriction in elections is the model of single-peaked preferences in-
troduced by Black [2]. Unfortunately, the concept of single-peakedness is fragile
and is unlikely to appear in real-world data sets. To overcome this limitation,
recent research has established notions of nearly single-peaked preferences which
are more robust [6, 7, 11, 14].

To the best of our knowledge, the only paper investigating (coalitional) ma-
nipulation in nearly single-peaked elections is the work by Faliszewski, Hema-
spaandra, and Hemaspaandra [14] (a detailed comparison to our paper can be
found in the Related Work Section). Our paper follows this new line of research
and extends it with the following contributions:

– In our complexity analysis, we provide dichotomy results for constructive
coalitional weighted manipulation under k-approval in the voter deletion
model. The voter deletion model assumes that at most ` voters are not
single-peaked with respect to the linear axis. Our results pinpoint the border
between P membership and NP-completeness with respect to the number of
approved candidates and the distance to single-peakedness.

– For veto we show how the complexity of constructive coalitional weighted
manipulation behaves under seven notions of nearly single-peakedness that
have been recently introduced [11, 14]. Our dichotomies show that construc-
tive coalitional weighted manipulation in nearly single-peaked electorates is
either trivial (and therefore in P) or NP-complete depending on the distance
to single-peakedness.

Related Work. Our work continues the line of research on manipulation of elec-
tions. The first paper investigating manipulation in elections is the seminal pa-
per of Bartholdi, Tovey, and Trick [1], where they studied the single manipula-
tion problem with unweighted voters and proved the problem to be solvable in
polynomial-time for all scoring rules.

Constructive coalitional weighted manipulation (CCWM, for short) was first
introduced by Conitzer, Sandholm, and Lang [5]. Later, Hemaspaandra and
Hemaspaandra provided a dichotomy result for the CCWM problem for scor-
ing rules [18]. In particular, they showed that CCWM is easy for plurality, but
is NP-hard for all other k-approval and k-veto rules. Procaccia and Rosenschein
have extended this line of research by studying the average-case complexity of
manipulation [19].

Walsh was the first who studied the complexity of manipulation in single-
peaked elections, especially with a view to answer the question whether the



complexity of manipulation changes under single-peaked elections [21]. In par-
ticular, he demonstrated that the complexity of CCWM under single transferable
vote remains NP-hard even for single-peaked elections. Faliszewski et al. proved
that for single-peaked profiles, CCWM for m-candidate 3-veto elections is NP-
complete for m = 5 and is in P for all other m [13]. Furthermore, they showed
that for single-peaked profiles, CCWM for veto is in P and they completely
characterized which scoring rules have easy CCWM problems and which scoring
rules have hard CCWM problems for three-candidate elections. Brandt et al.
generalized the latter result for m-candidate scoring rules [3].

The present paper was mostly motivated by Faliszewski, Hemaspaandra, and
Hemaspaandra [14]: Amongst others, they investigated the complexity of the
CCWM problem under veto elections in nearly single-peaked societies, where
they used the nearly single-peaked notion of `-Voter Deletion (which is called
`-Maverick in their paper). We extend their results to seven common notions of
nearly single-peakedness that were recently discussed in the literature [11, 14].

Two recent publications have studied the complexity of computing the dis-
tance to single-peaked electorates. Erdélyi, Lackner, and Pfandler [11] have fo-
cused on the single-peaked domain whereas Bredereck, Chen, and Woeginger
[4] considered distances to a larger number of domain restrictions. Both papers
mostly contain NP-hardness results with a few notable exceptions such as that
the candidate deletion distance is computable in polynomial time. For a practi-
cal use of nearly single-peaked preferences, it would be desirable to have efficient
algorithms to compute distances. This line of research has been initiated by
Elkind and Lackner [8], where several approximation and fixed-parameter algo-
rithms have been presented.

Organization. The remainder of the paper is organized as follows. In Section 2,
we recap some voting theory basics. Section 3 gives an overview on the nearly
single-peakedness notions and their relations handled in this paper. Our results
on manipulation are presented in Section 4. Section 5 provides some conclusions
and future directions.

2 Preliminaries

Let C be a finite set of candidates, V be a finite set of voters, and let � be a vote
(i.e., a total order) on C. Without loss of generality let V = {1, . . . , n}. Let P =
(�1, . . . ,�n) be a (preference) profile, i.e., a collection of votes. For simplicity,
we will write for each voter i ∈ V , c1c2 . . . cm instead of c1 �i c2 �i . . . �i cm.
For two preference profiles on the same set of candidates P = (�1, . . . ,�n)
and L = (�n+1, . . . ,�s), let (P,L) = (�1, . . . ,�s) define the union of the two
preference profiles. An election is defined as a triple E = (C, V,P), where C is
the set of candidates, V the set of voters, and P a preference profile over C.
Throughout the paper let m denote the number of candidates and n the number
of votes.

A voting correspondence (or voting rule) F is a mapping from a given election
E = (C, V,P) to a non-empty subset W ⊆ C; we call the candidates in W the



winners of the election E. A prominent class of voting rules is the class of
scoring rules, which are defined using a scoring vector α = (α1, . . . , αm), αi ∈ N,
α1 ≥ · · · ≥ αm. In an m-candidate scoring rule each voter has to specify a tie-
free linear ordering of all candidates and gives αi points to the candidate ranked
in position i. The winners of the election are the candidates with the highest
overall score. k-approval is an m-candidate scoring rule with α1 = · · · = αk = 1
and αk+1 = · · · = αm = 0. veto is the scoring rule defined by the scoring vector
α1 = · · · = αm−1 = 1 and αm = 0.

In the case of k-approval we say that the first k candidates in a given ranking
have been approved whereas the others have been disapproved. For k-approval
and veto, preferences actually do not have to be full rankings but dichotomous
preferences suffice. Dichotomous preferences only distinguish between approved
and disapproved candidates. In this paper we often do not give full rankings but
rather the set of approved candidates. Strictly speaking, we use this notation to
describe some total order that ranks the approved candidates above the disap-
proved candidates; all such total orders are equivalent from the perspective of
k-approval.

Definition 1. Let an axis A be a total order on C denoted by <. Furthermore,
let � be a vote with c as its highest ranked candidate. The vote � is single-peaked
with respect to A if for any x, y ∈ C, if x < y < c or c < y < x then c � y � x
has to hold. A preference profile P is said to be single-peaked with respect to
an axis A if each vote is single-peaked with respect to A. A preference profile P
is said to be single-peaked consistent if there exists an axis A such that P is
single-peaked with respect to A.

Note that, given a set of approved candidates and an axis A, there exists a
single-peaked total order that corresponds to these approved candidates if and
only if the candidates form an interval on A. Thus, for dichotomous preferences,
one could also define single-peakedness in terms of intervals on an axis. We re-
mark that recently several other domain restrictions specifically for dichotomous
preferences have been proposed and studied [9].

To establish NP-hardness results we will reduce from the well-known NP-
complete problem Partition (see, e.g., [15]), which is defined as follows.

Partition

Given: A finite multiset S = {x1, . . . , xs} of positive integers with∑s
i=1 xi = 2X for some positive integer X.

Question: Is there a subset S′ ⊂ S such that the sum of the elements in S′

is exactly X?

3 Nearly Single-Peakedness

As we build upon the notions of nearly single-peakedness which were studied by
Erdélyi, Lackner, and Pfandler [11], we briefly recapitulate the relevant defini-



tions and results. All these notions have been previously introduced and defined
in the literature [11, 12, 14].

In the following, let E = (C, V,P) be an election and ` a positive integer. Also,
by P[C ′] we denote the profile P restricted to the candidates in C ′. Analogously if
A is an axis over C, we denote by A[C ′] the axis A restricted to candidates in C ′.

Voter Deletion: A profile P is `-Voter Deletion single-peaked consistent if by
removing at most ` votes from P one can obtain a preference profile P ′ that
is single-peaked consistent. (We remark that this notion is also referred to
as `-maverick-SP [14] and as `-maverick single-peaked consistent [11].)

Candidate Deletion: A profile P is `-Candidate Deletion single-peaked con-
sistent if we can obtain a set C ′ ⊆ C by removing at most ` candidates from
C such that the preference profile P[C ′] is single-peaked consistent.

Local Candidate Deletion: Let A be an axis over C. A vote � on a candidate
set C ′ ⊂ C is called a partial vote. A partial vote on C ′ is said to be single-
peaked with respect to A if it is single-peaked with respect to A[C ′]. A profile
P is `-Local Candidate Deletion single-peaked consistent if there exists an
axis A such that by removing at most ` candidates from each vote we obtain
a partial profile P ′ that is single-peaked with respect to A.

Additional Axes: A profile P is `-Additional Axes single-peaked consistent if
there is a partition V1, . . . , V`+1 of the voter set V such that the correspond-
ing preference profiles P1, . . . ,P`+1 are single-peaked consistent.

Global Swaps: A profile P is `-Global Swaps single-peaked consistent if P can
be made single-peaked by performing at most ` swaps of consecutive candi-
dates in the profile. (Note that these swaps can be performed wherever we
want – we can have ` swaps in only one vote, or one swap each in ` votes.)

Local Swaps: A profile P is `-Local Swaps single-peaked consistent if P can
be made single-peaked consistent by performing no more than ` swaps of
consecutive candidates per vote.

Candidate Partition: A profile P is `-Candidate Partition single-peaked con-
sistent if the set of candidates C can be partitioned into at most ` disjoint
sets C1, . . . , C` with C1∪ . . .∪C` = C such that the profiles P[C1], . . . ,P[C`]
are single-peaked consistent.

We denote by V D(P)/CD(P)/LCD(P)/AA(P)/GS(P)/LS(P)/CP (P) the
smallest ` such that P is `-Voter Deletion/`-Candidate Deletion/`-Local Can-
didate Deletion/`-Additional Axes/`-Global Swaps/`-Local Swaps/`-Candidate
Partition single-peaked consistent.

Theorem 2 (cf. [11]). Let P be a preference profile. Then the following in-
equalities hold:

(1) LS(P) ≤ GS(P). (4) LCD(P) ≤ LS(P). (7) CP (P) ≤ CD(P) + 1.

(2) LCD(P) ≤ CD(P). (5) V D(P) ≤ GS(P). (8) CP (P) ≤ LS(P) + 1.

(3) CD(P) ≤ GS(P). (6) AA(P) ≤ V D(P).
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Fig. 1. Hasse diagram of the partial order described in Theorem 2.

This list is complete in the following sense: Inequalities that are not listed here
and that do not follow from transitivity do not hold in general. The resulting
partial order with respect to ≤ is displayed in Figure 1 as a Hasse diagram.

Finally, let us summarize the complexity results concerning the detection of
nearly single-peaked elections. Here, the question is whether a given election
is `-X single-peaked consistent. This problem is polynomial-time solvable for
the Candidate Deletion distance and NP-complete for all X ∈ {Voter Deletion,
Local Candidate Deletion, Additional Axes, Global Swaps, Local Swaps} [4, 11].

4 Manipulation

In what follows we investigate the computational complexity of coalitional ma-
nipulation in scoring rules under the assumption that the underlying elections are
nearly single-peaked. For this we have to formally define the coalitional weighted
manipulation problem in general and for nearly single-peaked electorates. Let F
be a voting correspondence.

F-Constructive Coalitional Weighted Manipulation (F-CCWM)

Given: An election (C, V,P), where C is a set of candidates, V a set
of nonmanipulative voters, and P = (P1, . . . , Ph) a preference
profile; in addition, a set of manipulative voters S with V ∩S =
∅, a weight function w from V ∪ S to N, and a distinguished
candidate p ∈ C.

Question: Is there a preference profile L = (L1, . . . , Ls) for the manipula-
tive voters in S such that p is a (co-)winner in (C, V ∪S, (P,L))
with respect to the voting correspondence F?

In this paper we study F-CCWM for nearly single-peaked preferences. For
a fixed, non-negative integer ` and X ∈ {Voter Deletion, Candidate Deletion,
Local Candidate Deletion, Additional Axes, Global Swaps, Local Swaps, Candi-
date Partition}, we define F-`-X-CCWM to be F-CCWM restricted to profiles
that are `-X single-peaked consistent with respect to an axis A. Note that the
combined election (C, V ∪ S, (P,L)) has to be `-X single-peaked consistent. In



addition, we assume that this axis is part of the input. In the case of the addi-
tional axes distance, we assume that all axes are part of the input; in the case
of the candidate partition distance, we assume that the actual partition is part
of the input. To be more precise, F-`-X-CCWM is defined as follows:

F-`-X-CCWM

Given: An F-CCWM instance, an axis A, additional axes A1, . . . , A` if
X is Additional Axes, a partition of the candidate set C if X is
Candidate Partition.

Question: Is there a preference profile L = (L1, . . . , Ls) for the manipu-
lative voters in S such that (i) p is a (co-)winner in (C, V ∪
S, (P,L)) with respect to the voting correspondence F and (ii)
(C, V ∪ S, (P,L)) is `-X single-peaked consistent?

Remark. As mentioned earlier, it is NP-hard to verify whether an election is `-X
single-peaked consistent for all notions of distance X considered in this paper ex-
cept for the Candidate Deletion distance (for which this problem is in P) and for
the Candidate Partition distance (for which its complexity is not known) [4, 11].
These NP-hardness results, however, do not influence the complexity of F-`-X-
CCWM due to our assumption that the axis is part of the input. Given a fixed
axis A and X ∈ {Voter Deletion, Candidate Deletion, Local Candidate Deletion,
Global Swaps, Local Swaps}, it requires only polynomial time to verify that an
election is `-X single-peaked with respect to A. The same holds for Additional
Axis if all axes are given and for Candidate Partition if the partition of the can-
didates is given. Consequently, the complexity of F-`-X-CCWM can be studied
separately from the complexity of deciding `-X single-peaked consistency.

Let us start with our first result on CCWM. Following the notation of Fal-
iszewski, Hemaspaandra, and Hemaspaandra [14], let (α1, α2, α3) elections de-
note three-candidate scoring rule elections with scoring-vector α = (α1, α2, α3).
In that paper it was proven that for each α1 ≥ α2 > α3, (α1, α2, α3)-1-Voter
Deletion-CCWM is NP-complete. This result implies that Veto-1-Voter
Deletion-CCWM for three-candidate elections is NP-complete. In contrast,
Veto-CCWM is in P for single-peaked societies. The following proposition
makes use of Theorem 2 and shows that the same holds for all other notions of
distance studied in this paper.

Proposition 3. Let X ∈ {Candidate Deletion, Local Candidate Deletion, Ad-
ditional Axes, Global Swaps, Local Swaps}. For each α1 ≥ α2 > α3, the problems
(α1, α2, α3)-1-X-CCWM and (α1, α2, α3)-2-Candidate Partition-CCWM
are NP-complete.

Proof. Faliszewski, Hemaspaandra, and Hemaspaandra [14] show NP-complete-
ness of the (α1, α2, α3)-1-Voter Deletion-CCWM problem. We now show
that a three candidate, 1-voter deletion single-peaked consistent election is also
1-X single-peaked consistent for all X and 2-candidate partition single-peaked



consistent. It is easy to see that every election E over three candidates is 1-
candidate deletion, 1-local candidate deletion, and 2-candidate partition single-
peaked consistent. From Theorem 2, Inequality (6), follows that E is also 1-
additional axes single-peaked consistent.

Let C = {a, b, c} be the set of candidates, and without loss of generality
assume that E is 1-voter deletion single-peaked consistent along the axis a <
b < c. Note that there are only two possible non-single-peaked votes, acb and
cab. In both votes, swapping the last two candidates leaves us with single-peaked
votes with respect to axis a < b < c. Thus, E is 1-global swaps single-peaked
consistent. From Theorem 2, Inequality (1), follows that E is 1-local swaps single-
peaked consistent. ut

4.1 Manipulation for k-Approval

We continue by investigating the computational complexity of manipulation for
the k-approval voting rule in `-Voter Deletion single-peaked societies. CCWM
for k-approval is known to be NP-complete in general [18]. This holds even for
single-peaked elections in many settings [3]. We extend these results to `-Voter
Deletion single-peaked societies. More concretely, we show a dichotomy result:
k-Approval-`-Voter Deletion-CCWM is in P if and only if ` < 2k−m

m−k , and
NP-complete otherwise. This gives a complete picture for k-approval with respect
to `-Voter Deletion single-peakedness. Both the P membership and NP-hardness
result are generalizations of the results for veto elections [14] and our proofs can
be seen as refinements of the corresponding proofs.

Theorem 4. Let m ≥ 3, k > 1, ` ≥ 1 be fixed integers such that k < m and
` ≥ 2k−m

m−k . Then k-Approval-`-Voter Deletion-CCWM for elections with
m candidates is NP-complete.

Proof. Membership in NP is trivial. We reduce from Partition with a sum of
2X. Let b be a positive integer such that max(1, 2k−m) ≤ b ≤ k− 1. Note that
such a b always exists since 1 < k < m. Let C = {x, y, p, c1, . . . , cm−3}, where p
is the distinguished candidate. To construct the votes in P, we split the sequence
pc1 · · · cb−1 into consecutive blocks of size m − k. (If necessary the last block is

filled with candidates from cb, . . . , cm−3.) Let d =
⌈

b
m−k

⌉
. These blocks give d

sets of candidates D1, . . . , Dd. Furthermore, let e = m−3−b
2 . We fix the axis A

to cb+dee < · · · < cm−3 < x < p < c1 < · · · < cb−1 < y < cb < · · · < cb+dee−1.
The profile P comprises the following votes:

– P contains d votes of weight X: For each i ∈ {1, . . . , d},

Vi : C \Di is approved, w(Vi) = X.

Note that all these votes are not single-peaked.
– `− d votes of weight 1: For i ∈ {d+ 1, . . . , `},

Vi : {x, y, p, c1, . . . , ck−4, cm−4}, w(Vi) = 1.



Also these votes are not single-peaked and hence we have exactly ` non-
single-peaked votes. Consequently, we force the manipulators to cast single-
peaked votes.

Let the set L consist of s manipulators with weights x1, . . . , xs.
At this point, candidates have the following scores: The candidates x and

y are approved by all votes and hence they have a score of d · X + (` − d).
Candidate p is approved by all votes except V1 since p ∈ D1 and thus has a
score of (d− 1) ·X + (`− d). The candidates c1, . . . , cb−1 have a score of at most
(d− 1) ·X + (`− d) since they are contained in at least one Di. The candidates
cb, . . . , cm−3 have a score of at most d ·X + (`− d).

Since the manipulators can cast only single-peaked votes and they want to
approve p but not both x and y, the manipulators approve an interval on A of
length k that contains p and either x or y.

Intuitively, the manipulators can only make p a winner if they manage to
give 2X points to p and X points to x and y such that x, y, and p are tied. Note
that in a single-peaked vote where p is approved, also either x or y has to be
approved. We claim that there is a subset S′ ⊂ S such that the elements in S′

sum to X if and only if p can be made a winner of the election by constructive
coalitional weighted manipulation.

“⇒”: Suppose there is a subset S′ ⊂ S such that the elements in S′ sum to
X. Let all the manipulators whose weight is in S′ approve

{x, p, c1, . . . , cb−1, cm−k+b−1, . . . , cm−3},

i.e., they approve a “block” of length k that starts at cb−1 and goes to the left
on axis A. All the manipulators whose weight is in S \ S′ approve

{p, y, c1, . . . , ck−2},

i.e., they approve a “block” of length k that starts at p and goes to the right. In
both cases the vote is single-peaked. It is easy to see that p gains 2X, whereas
x and y only gain X points. Note that the maximum score where p ties with x
and y is (d+ 1) ·X + (`− d) as x and y obtain d ·X + (`− d) points from the
nonmanipulators and the manipulators can distribute a score of 2X, but never
approve x and y together. Note that none of the other candidates can surpass
the score of x, y, and p. Hence, x, y, and p are among the winners tied for first
place making the distinguished candidate p a winner.

“⇐”: Suppose that p can be made a winner of the election by constructive
coalitional weighted manipulation. Note that according to the scores given by
the nonmanipulators, p is missing X points to be tied with x and y. The only
way p can gain X points on these two candidates is if the manipulators can
be divided into two groups, both weighing X points. The first group approves
p, x, and suitable candidates from {c1, . . . , cm−3}. The second group approves
p, y, and suitable candidates from {c1, . . . , cm−3}. Thereby, p gains 2X points,
whereas x and y gain only X points each. Thus, there is a subset S′ ⊂ S such
that the elements in S′ sum to X. ut



Theorem 5. If ` < 2k−m
m−k , then k-Approval-`-Voter Deletion-CCWM is

in P.

Proof. Without loss of generality let A : c1 < c2 < · · · < cm. Every vote dis-
approves m − k candidates. Consequently, the ` non-single-peaked voters dis-
approve at most ` · (m − k) < 2k − m candidates. Therefore, there is at least
one candidate contained in {cm−k+1, . . . , ck} that is approved by all non-single-
peaked voters, since |{cm−k+1, . . . , ck}| = 2k − m. (Note that 0 ≤ ` < 2k−m

m−k
implies 2k − m > 0.) Single-peaked voters may disapprove only candidates in
{c1, . . . , cm−k, ck+1, . . . , cm}. Thus, candidates in {cm−k+1, . . . , ck} approved by
all non-single-peaked voters are also approved by all single-peaked voters. Since
there exists at least one candidate that is approved by all voters (including the
manipulators), p is a winner if and only if it is approved by all voters (both
manipulators and nonmanipulators). ut

The following corollary shows how Theorem 4 carries over to Veto-`-Voter
Deletion-CCWM.

Corollary 6 (also shown in [14]). Let m, ` ∈ N be fixed such that ` > m− 3.
Then Veto-`-Voter Deletion-CCWM is NP-complete. Otherwise, Veto-`-
Voter Deletion-CCWM is in P.

4.2 Manipulation for Veto

In this section we study the complexity of constructive coalitional weighted
manipulation in nearly single-peaked societies under the veto rule. For veto,
CCWM is NP-complete in general [18], whereas the problem is in P for single-
peaked elections [13]. In contrast to the previous section, we study here only a
single rule, veto, but consider a variety of notions for nearly single-peakedness.
Table 1 summarizes the complexity results regarding Veto-`-X-CCWM under
several notions of nearly single-peakedness. Note that all results in this table
yield dichotomies.

In the following we will prove each entry of this table. We assume throughout
this section that there are at least three candidates, since for less than three
candidates Veto-CCWM is in P [5, 18].

All P membership proofs in this section follow the same reasoning as the proof
of Theorem 5. More specifically, we show that there is at least one candidate that
is never vetoed. As a consequence, a candidate p can only be amongst the winners
if p is never vetoed (both by the nonmanipulators and the manipulators). Clearly,
it is possible in polynomial time to determine whether a candidate is approved
by all nonmanipulative voters and to construct the manipulator’s votes that
approve p. In the following P membership proofs we only argue that there is
indeed at least one candidate that is never vetoed and omit the remainder of the
argument.

Theorem 7. Let m ≥ 3. For each ` ≥ 0, if ` ≤ m − 3 Veto-`-Candidate
Deletion-CCWM is in P and NP-complete otherwise.



X in P NP-complete Reference

Voter Deletion ` ≤ m− 3 ` > m− 3 [14] & Cor. 6

Candidate Deletion ` ≤ m− 3 ` > m− 3 Thm. 7

Local Candidate Del. ` = 0 ` ≥ 1 Prop. 8

Global Swaps
m = 2k: ` ≤ k2 − k − 1 ` > k2 − k − 1 Thm. 10

m = 2k − 1: ` ≤ k2 − 2k ` > k2 − 2k Thm. 10

Local Swaps ` < bm−1
2
c ` ≥ bm−1

2
c Thm. 11

Candidate Partition ` < m
2

` ≥ m
2

Thm. 12

Additional Axes ` < m
2
− 1 ` ≥ m

2
− 1 Thm. 13

Table 1. Complexity results regarding Veto-`-X-CCWM under several notions of
nearly single-peakedness, assuming m ≥ 3.

Proof. We are first handling the ` ≤ m−3 case. Let A be the axis along which the
election is nearly single-peaked and let cl and cr be the leftmost and rightmost
candidates in A, respectively. Note that in a veto election over a single-peaked
society, only cl and cr can be vetoed. In an `-Candidate Deletion single-peaked
society there are at most ` additional candidates vetoed in those votes not con-
sistent with the axis A. Thus, there are at most `+ 2 ≤ m− 1 candidates that
are vetoed. Consequently, there has to be at least one candidate who never got
vetoed.

We now turn to the case where ` > m − 3. In this case, hardness follows
immediately from the fact that every profile is (m−2)-candidate deletion single-
peaked consistent and Veto-CCWM is an NP-hard problem [5, 18, 19]. ut

In the following proposition we require that ` ≥ 1. The ` = 0 case would
mean that the election is single-peaked, for which Brandt et al. [3] proved that
constructive coalitional weighted manipulation under the veto rule is in P.

Proposition 8. For each m ≥ 3 and ` ≥ 1, Veto-`-Local Candidate Dele-
tion-CCWM is NP-complete.

Proof. The crucial observation here is that with ` ≥ 1 every candidate can be
vetoed, since the vetoed candidate can be the one that is locally deleted. Thus,
this problem is equivalent to Veto-CCWM, which is NP-complete for each
m ≥ 3 [5, 18, 19]. ut

In the following, for any two candidates c1, c2 ∈ C let dA(c1, c2) be the
distance of two candidates on the axis A. For example, for the axis A = c1 <
c3 < c5 < c4 < c2 < c6 the distance dA(c1, c2) = 4.

Lemma 9. Let E = (C, V,P) be a single-peaked election along the axis A, where
cl and cr are the leftmost and rightmost candidates, respectively. The number of
swaps required to make a candidate c ∈ C the lowest-ranked candidate in a vote
v ∈ V is at least min(dA(c, cr), dA(c, cl)).



Proof. Without loss of generality assume that c is closer to cr in A than to cl (i.e.,
dA(c, cr) < dA(c, cl)). If a vote v coincides with the axis A then clearly exactly
min(dA(c, cr), dA(c, cl)) = dA(c, cr) swaps are needed to make c the candidate
who gets vetoed in v.

If v does not coincide with A, we have to distinguish three cases. First, let
c be the peak of v. In this case it is clear that c has to be swapped with all
other candidates to get vetoed and thus we need exactly dA(c, cr) + dA(c, cl) ≥
min(dA(c, cr), dA(c, cl)) swaps. Second, let c be left from v’s peak on axis A. This
means that, according to the definition of single-peakedness, all the candidates
left from c on axis A are ranked lower than c in v. To swap c through to the last
position, we will have to make at least dA(c, cl) > min(dA(c, cr), dA(c, cl)) swaps.
Finally, let c be right from v’s peak on axis A. This means that all the candidates
on axis A right from c are ranked lower than c in v. To swap c through to the
last position, we will have to make at least dA(c, cr) = min(dA(c, cr), dA(c, cl))
swaps. ut

Using Lemma 9, the following two theorems can be shown.

Theorem 10. Let k ≥ 2 be a positive integer.

1. Let the number of candidates be m = 2k. For each ` ≥ 0, Veto-`-Global
Swaps-CCWM is in P if ` ≤ k2 − k − 1 and NP-complete otherwise.

2. Let the number of candidates be m = 2k−1. For each ` ≥ 0, Veto-`-Global
Swaps-CCWM is in P if ` ≤ k2 − 2k and NP-complete otherwise.

Proof. Without loss of generality, let A : c1 < · · · < cm be the axis for which the
election is nearly single-peaked. Let us consider case (1) first, i.e., m = 2k. We
count the number of candidates who can be vetoed. These are the two candidates
c1 and cm, and those candidates that can be ”swapped” to the last position with
at most ` swaps. Observe that it requires at least one swap each for swapping
c2 and cm−1 to the lowest position in a vote (cf. Lemma 9). For c3 and cm−2
at least three swaps are required, etc. We can make at most k2 − k − 1 =
−1 + 2

∑k−1
i=0 i swaps and consequently less than m different candidates can be

swapped to a last position in some vote (cf. Lemma 9). Thus, there is at least
one candidate who is never vetoed. In case (2), i.e., m = 2k − 1, note that

k2 − 2k = −1 + (k − 1) + 2
∑k−2

i=0 i and hence less than m can be vetoed.
To show hardness we reduce from Partition. Let m = 2k and ` ≥ k2 − k.

(The case that m = 2k−1 works analogously.) Given a multiset S = {x1, . . . , xs}
of s integers that sum to 2X, define the following instance of Veto-`-Global
Swaps-CCWM. Let C = {p, cl, cr, c1, . . . , cm−3} be the set of candidates and
let p be the distinguished candidate. Let A be the axis for which the election is
nearly single-peaked and let candidates cl and cr be the leftmost and rightmost
candidates in A. Let the nonmanipulative voters consist ofm−2 voters, each with
weight X such that for every candidate c ∈ C\{cl, cr} there is a nonmanipulative
voter who ranks c last but otherwise the votes are identical with the axis A or
its reverse A (if c is closer to cl on A, then we choose the axis as vote which

ranks cl last). Note that in this case we need 2
∑k−1

i=0 i = k2 − k global swaps to



make the profile single-peaked which is still less or equal `. Let L consist of s
manipulators with weights x1, . . . , xs.

We claim that there is a subset S′ ⊂ S such that the elements in S′ sum to X
if and only if p can be made a winner of the election by constructive coalitional
weighted manipulation.

“⇒”: Suppose there is a subset S′ ⊂ S such that the elements in S′ sum to
X. Let all the manipulators whose weight is in S′ vote identically to the axis A,
and all the manipulators whose weight is in S \ S′ vote reverse. It is easy to see
that now all candidates tie for first place and, thus, the distinguished candidate
p is a winner.

“⇐”: Suppose that p can be made a winner of the election by constructive
coalitional weighted manipulation. Note that p ties (with c1, . . . , cm−3) for the
third place X points behind both candidates cl and cr. The only way p can gain
X points on these two candidates is if the manipulators can be divided into two
groups, both weighing X points and vetoing candidates cl and cr, respectively.
Thus, there is a subset S′ ⊂ S such that the elements in S′ sum to X. ut

Theorem 11. Let m ≥ 3 denote the number of candidates. For each ` ≥ 0,
Veto-`-Local Swaps-CCWM is in P if ` < bm−12 c and NP-complete other-
wise.

Proof. Let A be the axis along the election is nearly single-peaked, and let cl
and cr be the leftmost and rightmost candidates in A, respectively. Observe that
there is a candidate on A with distance at least bm−12 c to both cl or cr. Thus,
for ` < bm−12 c, there is a candidate that is never vetoed.

For showing hardness, note that when we start with the single-peaked votes
c1 � c2 � · · · � cm or cm � · · · � c2 � c1, bm−12 c swaps suffice to make any
candidate rank last. Thus, every candidate can be vetoed and Veto-`-Local
Swaps-CCWM for ` ≥ bm−12 c is equivalent to Veto-CCWM, which is NP-
complete for m ≥ 3 [5, 18, 19]. ut

Theorem 12. Let m ≥ 3 be the number of candidates in an election E. For
each ` ≥ 1, Veto-`-Candidate Partition-CCWM is in P if ` < m

2 and
NP-complete otherwise.

Proof. In the ` < m
2 case we again count the number of candidates who can

be vetoed. As we can veto at most two candidates per partition and we have
` single-peaked partitions, there can be at most 2` different candidates being
vetoed. Since 2` < m, there has to be at least one candidate who is never
vetoed.

For the other case, ` ≥ m
2 , note that since there are at least m

2 partitions, all
candidates can be vetoed while preserving candidate partition single-peakedness.
Hardness for this case follows from the result for the general case [5, 18, 19]. ut

Finally, we turn to Veto-`-Additional Axes-CCWM.

Theorem 13. Let m ≥ 3. For each ` ≥ 0, Veto-`-Additional Axes-CCWM
is in P if ` < m

2 − 1 and NP-complete otherwise.



Proof. The proof is similar to the candidate partition case (Theorem 12). The
important observation is that for this purpose candidate partition and alternative
axes provide the same freedom: In both cases at most two candidates per axis
or partition can be vetoed. Note that the −1 in the bound on ` comes from the
fact that ` additional axes give us `+ 1 axes in total. ut

5 Conclusions and Open Questions

We have investigated the computational complexity of manipulation in nearly
single-peaked elections, where we focused on k-approval and veto. For veto we
have studied seven notions of nearly single-peakedness that were recently stud-
ied in the literature [11, 14]. In contrast, for k-approval, we have explored how
k influences the complexity if we consider voter deletion as notion for nearly
single-peakedness. In both cases we proved dichotomies that exactly pinpoint
the border of tractability. These results give insight into the sources of hardness
and reveal in which settings we can hope for computationally hard instances.

There are several ways to continue with this direction of research. Extending
our results to k-approval (or even arbitrary scoring rules) for all notions of nearly
single-peakedness is certainly an important direction to go. Another way is to
consider other notions of strategic behavior such as bribery and control in the
light of nearly single-peakedness.
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