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Abstract
The goal of this short paper is to provide an
overview of recent progress in understanding and
exploiting useful properties of restricted prefer-
ence domains, such as, e.g., the domains of single-
peaked, single-crossing and 1-Euclidean prefer-
ences.

1 Introduction
Aggregating preferences of multiple agents by means of vot-
ing is often hard. One can identify two primary causes of this
phenomenon. The first of them has to do with fundamental
properties of collective preferences. Indeed, it was already
known to the Marquis de Condorcet that even when individ-
ual voters are fully rational, their collective judgment may be
irrational: if each voter ranks all alternatives in {a, b, c} from
best to worst, it may happen that a majority of voters prefer
a to b, a majority of voters prefer b to c, yet a majority of
voters prefers c to a, i.e., there is a cycle in majority pref-
erences. In a similar spirit—but almost two centuries later—
Arrow showed in his seminal work [1950] that when there are
at least three alternatives, there is no perfect voting rule: he
identified a small set of appealing axioms such that no vot-
ing rule for three or more alternatives can satisfy all of them.
A closely related result was subsequently proved by Gibbard
[1973] and Satterthwaite Satterthwaite [1975], who observed
that under any ‘reasonable’ voting rule there exists a scenario
where some voter benefits from misrepresenting her prefer-
ences.

The results listed in the previous paragraph indicate that
preference aggregation is hard from a conceptual perspective.
However, it is also hard in a precise technical sense: there are
many useful preference aggregation procedures whose out-
put is NP-hard to compute. In particular, this is the case
for the Kemeny rule, which is arguably the most natural vot-
ing rule to aggregate a set of preference rankings into a sin-
gle ranking, as well as for two popular committee selection
rules that provide fully proportional representation, namely,
the Chamberlin–Courant rule and the Monroe rule.

Now, social choice theorists have observed that the first
source of hardness can be circumvented by focusing on sce-
narios where voters’ preferences share some common struc-
ture. The most famous result of this type dates back to the

important early work of Black [1948] and says that if vot-
ers’ preferences are essentially single-dimensional, then there
are no cycles in the majority preferences, and there is a vot-
ing rule that is strategyproof. The specific domain of pref-
erences considered by Black is that of single-peaked pref-
erences; similar results have been subsequently obtained for
other restricted preference domains, such as those of prefer-
ences that are single-crossing or single-peaked on a tree (we
provide formal definitions of these notions in Section 2).

It is then natural to ask whether the same approach can be
used to circumvent computational complexity issues as well.
The first foray in this direction was made by Walsh [Walsh,
2007], and since 2007 hardness and easiness results for var-
ious preference domains have been obtained for winner de-
termination under a variety of voting rules, as well as for the
problems of manipulation, control and bribery.

Interestingly, while purely social choice-theoretic issues
(such as manipulability or majority cycles) vanish as soon
as we assume that voters’ preferences belong to a suitable
restricted domain, many of the algorithms for voting-related
problems require the knowledge of the respective structural
relationship among voters/alternatives (such as the order of
candidates witnessing that the profile is single-peaked). This
means that, to make use of these algorithms, one also needs
an efficient procedure to discover whether a given preference
profile has the required structural property and to find a re-
spective witness. Consequently, the problem of designing
such procedures has received a considerable amount of atten-
tion, too, resulting in polynomial-time algorithms for recog-
nizing preferences that belong to several prominent restricted
domains, as well as hardness results for some further do-
mains.

The goal of this paper is to discuss both of these strands
of algorithmic results, as well as to provide pointers to the
literature; a longer literature survey that covers this area in
further detail is in preparation.

2 Domain restrictions
Preliminaries For every positive integer n, set [n] =
{1, . . . , n}. Let A be a finite set of alternatives, or candi-
dates, and let m = |A|. A weak order, or preference relation,
is a binary relation over A that is complete and transitive. A
linear order is a weak order that, in addition, is antisymmet-



ric. Given a linear order v over A, we denote the top alterna-
tive in v by top(v).

A profile P = (v1, . . . , vn) over a set of alternatives A is
a list of linear orders over A. We associate P = (v1, . . . , vn)
with a set of voters N = [n]; the order vi is called the vote of
voter i. For convenience, we write a �i b whenever (a, b) ∈
vi, i.e., when voter i strictly prefers a to ab. Given a profile P
over A, we define its majority relation �maj as a weak order
over A such that

a �maj b ⇐⇒ |{i ∈ N : a �i b}| > |{i ∈ N : b �i a}|.

We write a �maj b if a �maj b, but not b �maj a. Alternative
a is a weak Condorcet winner if a �maj b for all b ∈ A; it is a
Condorcet winner is a �maj b for all b ∈ A.

Single-Peaked Preferences The domain of single-peaked
preferences was first defined by Black [1948]. It captures set-
tings where there is a natural ordering over the alternatives,
and voters’ preferences are consistent with this order. Popu-
lar examples include voting on tax rates, the military budget,
or simply the temperature in the room.

Let C be a linear order over the set of alternatives A. A vote
v over A is single-peaked with respect to C if for every pair
of candidates a, b ∈ A with top(v)C bC a or aC bC top(v)
it holds that v ranks b above a. A profile P over A is single-
peaked with respect to C if every vote in P is single-peaked
with respect to C; P is single-peaked if there exists a linear
order C over A such that P is single-peaked with respect to
C. We refer to any such order C as an axis for P .

The domain of single-peaked profiles has many attractive
properties: it admits a family of voting rules that are not sus-
ceptible to manipulation (see, e.g., [Moulin, 1991]), and for
any profile in this domain the majority relation is transitive
(i.e., Condorcet’s paradox is circumvented).

Single-Crossing Preferences In contrast to single-peaked
profiles, single-crossing profiles are defined in terms of an
ordering of the voters. The definition of this domain can be
traced back to the work of Mirrlees [1971] and Roberts [1977]
on income taxation.

A profile P = (v1, . . . , vn) over A is single-crossing
with respect to the given order of voters if for every pair
of candidates a, b ∈ C both sets {i ∈ [n] : a �i b} and
{i ∈ [n] : b �i a} are contiguous subsets of [n]; P is single-
crossing if the votes in P can be permuted so that P becomes
single-crossing with respect to the resulting order of voters.

Single-crossing profiles have many of the same properties
as single-peaked profiles. In particular, the majority relation
of a single-crossing profile is transitive.

Euclidean Preferences Euclidean preferences capture set-
tings where voters and alternatives can be identified with
points in the Euclidean space, with voters’ preferences driven
by distances to alternatives. This domain was considered by
Coombs [1950].

Formally, a profile P is d-Euclidean (where d is a positive
integer) if there exists a map x : N ∪ A → Rd such that for
all i ∈ N and all a, b ∈ A it holds that

a �i b =⇒ ‖x(i)− x(a)‖ < ‖x(i)− x(b)‖.

That is, voter i prefers those alternatives that are closer to her
according to the embedding x. Here, ‖ · ‖ refers to the usual
Euclidean `2-norm on Rd.

It is not hard to see that 1-Euclidean preferences are both
single-peaked and single-crossing, with the respective order-
ings of voters/alternatives determined by their positions on
the real line under x. Interestingly, the converse is not true,
i.e., there exist profiles that are single-peaked and single-
crossing, but not 1-Euclidean [Coombs, 1950; Elkind et al.,
2014; Chen et al., 2015]. Another simple observation is that
every profile is d-Euclidean for sufficiently large d. We also
remark that d-Euclidean profiles with d > 2 do not necessar-
ily have a Condorcet winner.
Preferences Single-Peaked/Single-Crossing on a Tree De-
mange [1982] observes that if we place candidates on a tree
rather than a line, and require the voters’ preferences to be
driven by candidates’ positions on that tree, we obtain a large
preference domain that nevertheless retains some of the at-
tractive properties of the single-peaked domain.

Formally, let T = (A,E) be a tree with vertex set A.
A profile P over A is single-peaked on T if P |T ′ is single-
peaked for every path T ′ ⊆ T . A profile P is single-peaked
on a tree if there is a tree T such that P is single-peaked on T .

It can be shown that if a profile is single-peaked on a tree,
it necessarily has a weak Condorcet winner; however, its ma-
jority relation need not be transitive.

In a similar manner we can define what it means for a pro-
file to be single-crossing on a tree [Kung, 2015].

3 Recognition Algorithms
In this section, we will consider the problem of efficiently
deciding whether a given preference profile belongs to one of
the restricted domains listed in Section 2.
Single-Peaked Preferences Bartholdi III and Trick [1986]
were the first to show that single-peaked preferences can be
recognized in polynomial time. Their argument employed
a reduction to the consecutive ones problem, which asks
whether the columns of a given 0/1-matrix can be reordered
so that in every row the 1s occur consecutively, i.e., as a con-
tiguous block. Since the consecutive ones problem admits a
linear-time algorithm [Booth and Lueker, 1976], this reduc-
tion implies that checking single-peakedness is possible in
O(m2n) time. Later, Doignon and Falmagne [1994] devel-
oped a direct algorithm that runs in time O(mn + n2), and
Escoffier et al. [2008] discovered an algorithm whose run-
ning time is O(nm). The algorithm of Escoffier et al. [2008]
builds up an underlying axis from the outside in, and is based
on the crucial observation that alternatives that are ranked last
by some voters must be placed on one of the extreme ends of
the axis under construction.

Ballester and Haeringer [2011] show that single-peaked
preferences can be characterized in terms of two forbidden
configurations: they identify two constant-size profiles (one
with two voters and four alternatives and one with three vot-
ers and three alternatives) such that a profile P is single-
peaked if and only if neither of these two profiles is isomor-
phic to a subprofile of P . This observation provides an al-
ternative polynomial-time algorithm for recognizing single-



peaked preferences: one can simply go over all subprofiles of
a given size, and check that none of them is isomorphic to one
of the two forbidden profiles.

Single-Crossing Preferences A simple way to recognize
single-crossing preferences is to guess the leftmost vote,
sort all other votes by their Kendall-tau distance to the first
vote, and check if the resulting profile is single-crossing
with respect to the resulting order of voters [Doignon and
Falmagne, 1994; Elkind et al., 2012]; this can be done
in O((m logm)n2) time. One can also recognize single-
crossing preferences in O(m2n) time via a reduction to the
consecutive ones problem [Bredereck et al., 2013]. This do-
main also admits a characterization in terms of a small num-
ber of forbidden configurations [Bredereck et al., 2013].

Euclidean Preferences Doignon and Falmagne [1994]
present the first polynomial-time algorithm for recognizing
1-Euclidean profiles (this algorithm was later rediscovered
by Elkind and Faliszewski [2014]). Their algorithm is based
on the observation that any 1-Euclidean profile is single-
crossing, and the single-crossing order of voters is essentially
unique. It checks if the input profile is single-crossing, and
if so, uses the respective ordering of voters to determine a
possible ordering of the alternatives in R; the task of deter-
mining the actual positions of voters and alternatives in R is
then delegated to a linear (feasibility) program. Knoblauch
[2010] describes a polynomial-time algorithm that is based
on the fact that 1-Euclidean preferences are single-peaked;
this algorithm, too, first places voters and alternatives on the
line and then checks if the associated linear program has a
feasible solution.

Interestingly, in contrast with single-peaked and single-
crossing preferences, 1-Euclidean preferences cannot be
characterized by a constant number of forbidden configura-
tion [Chen et al., 2015; Peters, 2016].

For d > 2, d-Euclidean preferences become quite un-
wieldy. The recognition problem is NP-hard for any fixed
d > 2 and is, in fact, equivalent to the existential theory of the
reals (ETR) [Peters, 2016]. Further, this problem is unlikely
to be contained in NP, since there are d-Euclidean profiles all
of whose embeddings need exponentially many bits to spec-
ify; the best known complexity upper bound is PSPACE.
Preferences Single-Peaked/Single-Crossing on Trees
Trick [1989] describes an efficient algorithm for check-
ing whether a given profile is single-peaked on some
tree; interestingly, this algorithm may output a compli-
cated tree even if the input profile is single-peaked on
a path. One can then ask whether we can recognize in
polynomial time if a given profile is single-peaked on a
specific tree, or on some tree that has certain desirable
properties, such as small diameter, low maximum degree
or a constant number of leaves. It turns out that, while
answering this question for a given tree is NP-hard [Peters
and Elkind, 2016], a ‘nice’ tree can be identified efficiently
for many underlying notions of ‘niceness’ [Yu et al., 2013;
Peters and Elkind, 2016]. Complementing these results,
Kung [2015] provides an efficient algorithm for deciding if a
given profile is single-crossing on some tree.

4 Algorithms for Social Choice Problems on
Restricted Domains

Many popular single-winner rules, such as, e.g., Plurality,
Borda, Copeland, Maximin and ranked pairs are computa-
tionally easy; three prominent exceptions are the Dodgson
rule, the Kemeny rule, and the Young rule, which all have
NP-hard winner determination problems, see [Bartholdi III
et al., 1989; Hemaspaandra et al., 1997; Dwork et al., 2001;
Rothe et al., 2003; Hemaspaandra et al., 2005]. However, for
each of these rules the winners can be computed in polyno-
mial time for all restricted domains considered in this paper
as long as the number of voters is odd. Indeed, these rules are
Condorcet-consistent, i.e., they output the Condorcet winner
when it exists, and for each of our domains it holds that every
profile with an odd number of voters has a Condorcet winner.
The profiles with an even number of voters are more challeng-
ing, since for some of these rules the set of winners may be
a proper subset of the set of weak Condorcet winners; Brandt
et al. [2015] show how to handle this case in polynomial time
when voters’ preferences are single-peaked.

Most of the results mentioned in the previous paragraph
do not rely on having a witness that the input belongs to
the respective domain (such as a single-peaked axis or a
single-crossing order of the voters). In contrast, restricted-
domain algorithms for two important committee selection
rules, namely, the Chamberlin–Courant rule and the Monroe
rule, tend to make heavy use of this information. Typically,
they proceed by dynamic programming, where the structure
of the dynamic program is driven by the respective ordering
of voters/alternatives. This is the case, for instance, for the
algorithms that determine Chamberlin–Courant winners and
egalitarian Monroe winners under single-peaked preferences
[Betzler et al., 2013] or Chamberlin–Courant winners under
single-crossing preferences [Skowron et al., 2016]. Interest-
ingly, the classic variant of the Monroe rule is surprisingly re-
sistant to domain restrictions: it remains hard for both single-
peaked [Betzler et al., 2013] and single-crossing [Skowron et
al., 2016] preferences.

Restricting the preferences to be single-peaked on a tree
simplifies the winner determination problem for some com-
mittee selection rules (such as the egalitarian variant of the
Chamberlin–Courant rule); however, to obtain an efficient
algorithm for the classic variant of the Chamberlin–Courant
rule we need to place additional constraints on the structure of
the tree [Yu et al., 2013; Peters and Elkind, 2016]. In contrast,
if a profile is single-crossing on a tree, classic Chamberlin–
Courant winners can be computed efficiently [Clearwater et
al., 2015], irrespective of the shape of that tree.

Finally, many problems concerning strategic behavior in
voting (such as manipulation, control and bribery) also
become easier when voters’ preferences are single-peaked
or single-crossing [Walsh, 2007; Faliszewski et al., 2011;
Brandt et al., 2015; Faliszewski et al., 2014; Magiera and
Faliszewski, 2014; Erdélyi et al., 2015; Elkind et al., 2016].
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