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Abstract
Shortlisting is the task of reducing a long list of alternatives to a (smaller) set of 
best or most suitable alternatives. Shortlisting is often used in the nomination pro-
cess of awards or in recommender systems to display featured objects. In this paper, 
we analyze shortlisting methods that are based on approval data, a common type of 
preferences. Furthermore, we assume that the size of the shortlist, i.e., the number 
of best or most suitable alternatives, is not fixed but determined by the shortlist-
ing method. We axiomatically analyze established and new shortlisting methods and 
complement this analysis with an experimental evaluation based on synthetic and 
real-world data. Our results lead to recommendations which shortlisting methods to 
use, depending on the desired properties.

1  Introduction

Shortlisting is a task that arises in many different scenarios and applications: given 
a large set of alternatives, identify a smaller subset that consists of the best or most 
suitable alternatives. Prototypical examples of shortlisting are awards where a win-
ner must be selected among a vast number of eligible candidates. In these cases, we 
often find a two-stage process. In a first shortlisting step, the large number of con-
testants (books, films, individuals, etc.) is reduced to a smaller number. In a second 
step, the remaining contestants can be evaluated more closely and one contestant in 
the smaller set is chosen to receive the award.

Both steps may involve a form of group decision making (voting), but can also 
consist of a one-person or even automatic decision. For example, the shortlist of 
the Booker Prize is selected by a small jury (The Man Booker Prize 2018), whereas 
the shortlists of the Hugo Awards are compiled based on thousands of ballots (The 
Hugo Awards 2019). Similarly, the Baseball Writers’ Association of America selects 
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the new entries into the Baseball Hall of Fame by voting. In that case, any candidate 
with at least 75% approval enters the hall of fame, without a second round. Another 
very common application of shortlisting is the selection of most the promising appli-
cants for a position who will be invited for an interview (Bovens 2016; Singh et al. 
2010). Apart from these prototypical examples, shortlisting is also useful in many 
less obvious applications like the aggregation of expert opinions for example in the 
medical domain (Gangl et al. 2019) or in risk management and assessment (Tweed-
dale et al. 1992). Shortlisting can even be used in scenarios without agents in the 
traditional sense, for example if we consider features as voters to perform an initial 
screening of objects, i.e., a feature approves all objects that exhibit this feature (Fal-
iszewski et al. 2020).

In this paper, we consider shortlisting as a form of collective decision making. We 
assume that a group of voters announce their preferences by specifying which alter-
natives they individually view worthy of being shortlisted, i.e., they file approval 
ballots. In practice, approval ballots are commonly used for shortlisting, because the 
high number of alternatives that necessitates shortlisting in the first place precludes 
the use of ranked ballots.1 Furthermore, we assume that the number of alternatives 
to be shortlisted is not fixed (but there might be a preferred number), as there are 
very few shortlisting scenarios where there is a strong justification for an exact size 
of the shortlist. Due to this assumption, we are not in the classical setting of multi-
winner voting  (Kilgour and Marshall 2012; Faliszewski et  al. 2017; Lackner and 
Skowron 2023), where a fixed-size committee is selected, but in the more general 
setting of multi-winner voting with a variable number of winners  (Kilgour 2010, 
2016; Faliszewski et al. 2020).

Moreover, in this paper, we focus on the case where the goal of the shortlist-
ing process is determining the objectively best or most deserving candidates. This 
means that we implicitly assume that all candidates have a true value or quality that 
is the same for all voter. However, voters have only a noisy perception of these val-
ues. In this sense, our model is similar to the epistemic interpretation of voting rules 
as maximum likelihood estimators (Elkind and Slinko 2016) or to common-value 
auctions (Klemperer 1999; Shoham and Leyton-Brown 2009), where the item for 
sale has the same objective value to all bidders, but the bidders have different beliefs 
about this value.

In real-world shortlisting tasks, there are two prevalent methods in use: Multi-
winner Approval Voting (selecting the k alternatives with the highest approval score) 
and threshold rules (selecting all alternatives approved by more than a fixed per-
centage of voters). Further shortlisting methods have been proposed in the litera-
ture (Brams and Kilgour 2012; Kilgour 2016; Faliszewski et al. 2020). Despite the 
prevalence of shortlisting applications, there does not exist work on systematically 
choosing a suitable shortlisting method. Such a recommendation would have to con-
sider both expected (average-case) behavior and guaranteed axiomatic properties, 
and neither have been studied previously specifically for shortlisting applications 

1  For the same reason, approval ballots are also used for crowd-sourced labeling of training data for 
machine-learning purposes (Procaccia and Shah 2015; Shah and Zhou 2020; Allouche et al. 2022a).
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(cf. Sect. 1.1). Our goal is to answer this need and provide principled recommen-
dations for shortlisting rules, depending on the properties that are desirable in the 
specific shortlisting process.

In more detail, the contributions of this paper are the following:

•	 We define shortlisting as a voting scenario and specify minimal requirements for 
shortlisting methods (Sect. 2). Furthermore, we introduce five new shortlisting 
methods: First k-Gap, Largest Gap, Top-s-First-k-Gap, Max-Score- f -Threshold, 
and Size Priority (Sect. 3).

•	 We conduct an axiomatic analysis of shortlisting methods and by that identify 
essential differences between them. Furthermore, we axiomatically characterize 
Approval Voting, f -Threshold, and the new First k-Gap rule (Sect. 4).

•	 We present a connection between shortlisting and clustering algorithms, as used 
in machine learning. We show that First k-Gap and Largest Gap can be viewed 
as instantiations of linkage-based clustering algorithms (Sect. 6.1).

•	 In numerical simulations using synthetic data, we approach two essential diffi-
culties of shortlisting processes: we analyze the effect of voters with imperfect 
(noisy) perception of the alternatives and the effect of biased voters. These simu-
lations complement our axiomatic analysis by highlighting further properties of 
shortlisting methods and provide additional data points for recommending short-
listing methods (Sect. 5).

•	 In addition to synthetic data, we collected voting data from the Hugo Awards, 
which are annual awards for works in science-fiction. This data set is a real-
world application of shortlisting and offers a challenging test-bed for shortlisting 
rules. Using this data set, we investigate the ability of different shortlisting rules 
to produce short shortlists without excluding the alternative that actually won the 
award (Sect. 5).

•	 An open-source implementation  (Lackner and Maly 2022) of all considered 
shortlisting rules and the numerical experiments is available, including the Hugo 
data set.

•	 The recommendations based on our findings are summarized in Sect. 6. In brief, 
our analysis leads to a recommendation of Top-s-First-k-Gap, f -Threshold, and 
Size Priority, depending on the general shortlisting goal and desired behavior.

1.1 � Related work

There are two recent papers that are particularly relevant for our work. Both Falisze-
wski et al. (2020) and Freeman et al. (2020) investigate multi-winner voting with a 
variable number of winners. In contrast to our paper, the main focus of Faliszewski 
et  al. (2020) lies on computational complexity, which is less of a concern for our 
shortlisting setting (as discussed later). The paper also contains numerical simula-
tions related to the number of winners (which is one of the metrics we consider in 
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our paper). In the few cases where shortlisting rules are considered,2 their results 
regarding the average size of winner sets agree with our simulations (Sect. 5).

Freeman et al. (2020) study proportionality in multi-winner voting with a varia-
ble number of winners. We note that proportional representation of voters is incom-
patible with our desiderata of shortlisting rules (i.e., proportionality is incompatible 
with the Efficiency axiom, which we require for shortlisting rules). Thus, the rules 
and properties considered by Freeman et al. (2020) do not intersect with ours and 
are difficult to compare with. A simplified separation between our work and theirs is 
the underlying assumption of fairness: we require that the most deserving candidates 
are included in the shortlist (fairness towards candidates), whereas proportionality is 
concerned with fairness towards voters.

Shortlisting can also used to find a compromise between two opposing parties, 
for example when appointing an arbitrator in a dispute. In this setting, the first party 
proposes a shortlist. Then, the second party picks their preferred candidate from 
this list. de Clippel et al. (2014) and Barberà and Coelho (2017) study the optimal 
length for a shortlist in this setting. Núñez and Laslier (2015) and Barberà and Coe-
lho (2022) propose more complex methods to find a compromise using shortlisting 
and study these methods as two-player games. This use of shortlisting differs from 
our setting in that the two parties are antagonistic and aim to maximize their private 
utilities, while we assume that the decision makers are interested in identifying the 
(objectively) best alternative.

Finally, shortlisting is also the first step in a Participatory Budgeting process. Rey 
et al. (2021) studied shortlisting and the specific desiderata that arise in the context 
of a Participatory Budgeting process in their end-to-end model.

There are two other notable voting frameworks with a variable number of win-
ners. First, shortlisting rules can be viewed as a particular type of social dichotomy 
functions (Duddy et al. 2014; Brandl and Peters 2019), i.e., voting rules which par-
tition alternatives into two groups. Moreover, multiwinner voting with a variable 
number of winners can be seen as a special case of (binary) Judgment Aggrega-
tion  (List 2012; Endriss 2016) without consistency constraints. However, both of 
these frameworks treat the set of selected winners and its complement as symmetric. 
This is in contrast to shortlisting, where we usually expect the winner set to be only 
a small minority of all available candidates. For this reason, social dichotomy func-
tions and Judgment Aggregation rules are generally not well suited for shortlisting.

It is worth mentioning that shortlisting is is not only studied as a form of col-
lective decision making but also studied as a model of individual decision making. 
Manzini and Mariotti (2007) proposed Rational Shortlisting Methods as a model of 
human choice, which lead to number of works on shortlisting as a decision proce-
dure, for example the works of Dutta and Horan (2015), Horan (2016), Kops (2018), 
and Tyson (2013).

2  Faliszewski et al. (2020) consider f -Threshold (under the name NAV and with a different definition that 
is equivalent up to tiebreaking), Approval Voting (under the name NCSA and with a different definition 
that is equivalent up to tiebreaking), First Majority and q-NCSA.
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More generally, there is a substantial literature on multi-winner voting with a 
fixed number of winners (i.e., committee size), as witnessed by recent surveys (Kilg-
our and Marshall 2012; Faliszewski et al. 2017; Lackner and Skowron 2023). Multi-
winner voting rules are much better understood, both from an axiomatic  (Elkind 
et al. 2017b; Fernández et al. 2017; Aziz et al. 2017a; Lackner and Skowron 2021; 
Sánchez-Fernández and Fisteus 2019) and experimental  (Elkind et  al. 2017a; 
Bredereck et al. 2019) point of view, also in the context of shortlisting (Aziz et al. 
2017b; Bredereck et al. 2017). Results for multi-winner rules, however, typically do 
not easily translate to the setting with a variable number of winners.

2 � The Formal model

In this section we describe our formal model that embeds shortlisting in a voting 
framework. The model consists of two parts: a general framework for approval-
based elections with a variable number of winners (Kilgour 2010, 2016; Faliszewski 
et al. 2020) on the one hand and, on the other hand, four basic axioms that we con-
sider essential prerequisites for shortlisting rules.

An approval-based election E = (C,V) consists of a non-empty set of candidates 
(or alternatives)3 C = {c1,… , cm} and an n-tuple of approval ballots V = (v1,… , vn) 
where vi ⊆ C . If cj ∈ vi , we say that voter i approves candidate cj ; if cj ∉ vi , voter i 
does not approve candidate cj . We interpret a voter’s approval of a candidate as the 
preference for this candidate being included in the shortlist. In the following we will 
always write nE for the number of voters and mE for the number candidates in an 
election E. We will omit the subscript if E is clear from the context.

The approval score scE(cj) of candidate cj in election E is the number of approv-
als of cj in V, i.e., scE(cj) = |{i ∶ 1 ≤ i ≤ n and cj ∈ vi}| . We write sc(E) for the vec-
tor (scE(c1),… , scE(cm)) . To avoid unnecessary case distinctions, we only consider 
non-degenerate elections: these are elections where not all candidates have the same 
approval score.

An approval-based variable multi-winner rule (which we refer to just as “vot-
ing rule”) is a function mapping an election E = (C,V) to a subset of C. Given a 
rule R and an election E, R(E) ⊆ C is the winner set according to voting rule R , 
i.e., R(E) is the set of candidates which have been shortlisted. We refer to candi-
dates in R(E) as winners or winning candidates. Note that R(E) may be empty or 
contain all candidates. We allow this because several of the shortlisting rules that 
are used in practice or have been proposed in the literature can lead to such win-
ner sets. Additionally, in some applications, it might be preferable that a shortlisting 
rule fails by returning no/all candidates instead of returning a shortlist that contains 
bad candidates/excludes good candidates. For example, when selecting candidates 
for an interview, it might be better to know that there are no suitable candidates 
instead of interviewing candidates that do not fit the position. That being said, in 

3  In the following, we use the words candidate and alternative interchangeably.
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most situations, the possibility of returning the empty set is very undesirable. This 
will be formalized as an axiom in Sect. 4.4.

Now we introduce the basic axioms that we require every shortlisting rule to 
satisfy. Anonymity and Neutrality are two basic fairness axioms for voting rules 
(Zwicker and Moulin 2016).

Axiom 1  (Anonymity) All voters are treated equal, i.e., for every permutation 
� ∶ {1,… , n} → {1,… , n} and election E = (C,V) where V = (v1,… , vn) , if 
E∗ = (C,V∗) with V∗ = (v�(1),… , v�(n)) , then R(E) = R(E∗).

Axiom 2  (Neutrality) All candidates are treated equally, i.e., for every election 
E = (C,V) where V = (v1,… , vn) and permutation � ∶ C → C , if E∗ = (C,V∗) 
where V∗ = (v∗

1
,… , v∗

n
) with v∗

i
= {�(c) ∣ c ∈ vi} , then �(c) ∈ R(E∗) iff c ∈ R(E) 

for all c ∈ C.

Shortlisting differs from other multi-winner scenarios in that we are not inter-
ested in representative or proportional committees. Instead, the goal is to select the 
most excellent candidates. This goal is formalized in the following axiom.

Axiom 3  (Efficiency) No winner set can have a strictly smaller approval score 
than a non-winner, i.e., for all elections E = (C,V) and all candidates ci, cj ∈ C if 
scE(ci) > scE(cj) and cj ∈ R(E) then also ci ∈ R(E).

The assumption that approval scores are approximate measures of the general 
quality of candidates can also be argued in a probabilistic framework: under rea-
sonable assumptions the set of candidates with the highest approval scores contains 
the maximum likelihood estimate of the truly best candidates (Procaccia and Shah 
2015). Additionally, the accuracy of Approval Voting remains close to that of the 
maximum likelihood estimator even in  situations where it is not optimal. Finally, 
directly computing the likelihood of a candidate being the (objectively) best, requires 
learning a potentially large number of probability values (Procaccia and Shah 2015). 
So, while this approach can be very useful in settings such as crowd-sourcing, we 
view it as less applicable in our voting-based shortlisting scenario, mainly due to the 
requirement of having (rather) simple, comprehensible aggregation methods.

Further work that considers learning a ground truth from approval ballots was 
done by Allouche et al. (2022a, b), who showed that when additional information 
is available, it can be used to achieve a higher accuracy. Allouche et  al. (2022a) 
considered the case where the mechanism designer has an estimate of the size of 
the objectively best winner set. Allouche et al. (2022b) studied the case where the 
mechanism designer has reasons to believe that smaller approval ballots corresponds 
to higher certainty. Both assumptions are reasonable in some—but not all—short-
listing scenarios. Further, we note that these approaches do not fit in our framework 
as they are not based on approval scores. Studying whether the results of Allouche 
et al. (2022a, b) can be used to define better shortlisting rules when they are applica-
ble is an important research direction for future work.
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Efficiency can also be argued for from the perspective of voters: Let R satisfy 
Efficiency and W = R(E) for some election E. Then we claim that there does not 
exist a set W ′ with |W| = |W �| such that (i) |W � ∩ v| ≥ |W ∩ v| for all v ∈ V  and (ii) 
|W � ∩ w| > |W ∩ w| for some w ∈ V  . Otherwise 

∑
c∈W � scE(c) >

∑
c∈W scE(c) would 

hold. As |W| = |W �| this implies that there is at least one candidate c ∈ W �⧵W 
with scE(c) > min{scEc

� ∣ c� ∈ W} , a contradiction. In this sense, efficient short-
lists are Pareto efficient among shortlists of the same size.

It is also worth noting that Efficiency rules out proportional voting rules. It is 
easy to see why: a proportional selection of winner sets has to contain candidates 
supported by (sufficiently sized) minorities. As Efficiency demands that major-
ity candidates are always to be preferred, any sensible notion of proportionality 
clashes with Efficiency.

The last of our basic axioms is Non-tiebreaking. Since the number of winners 
is variable in our setting, there is generally no need to break ties. Because tie-
breaking is usually an arbitrary and unfair process, voting rules should not intro-
duce unnecessary tiebreaking. This idea yields our fourth axiom:

Axiom 4  (Non-tiebreaking) If two candidates have the same approval score, either 
both or neither should be winners. That is, for all elections E = (C,V) and all candi-
dates ci and cj if scE(ci) = scE(cj) then either ci, cj ∈ R(E) or ci, cj ∉ R(E).

We postulate these four axioms as the minimal requirements for a voting rule 
to be considered a shortlisting rule in our sense.

Definition 1  An approval-based variable multi-winner rule is a shortlisting rule if it 
satisfies Anonymity, Neutrality, Efficiency and is non-tiebreaking.

Observe that Non-tiebreaking and Efficiency are axioms that are only interest-
ing if we consider voting with a variable number of winners. Clearly, no voting 
rule for voting with a fixed number of winners can be non-tiebreaking. Further-
more, except for the issue of how to break ties, there is exactly one voting rule for 
approval voting with a fixed number k of winners that satisfies Efficiency, namely 
picking the k candidates with maximum approval score (Multi-winner Approval 
Voting).

A consequence of Efficiency and Non-tiebreaking is that a shortlisting rule 
only has to decide how many winners there should be.

This has two important consequences. First of all, nearly all results about 
shortlisting rules in this paper also apply in  situations where only the approval 
score is known and not the full approval profile. These results are, therefore, also 
applicable if weighted approval voting is used or the scores of candidates are 
determined by other means than voting. However, some results presented in this 
paper apply also to more general classes of multi-winner voting rules and some 
rules and axioms can be more naturally formulated by referencing the set of vot-
ers. Therefore, we still assume that the full approval profile is known.
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Second, requiring Efficiency and Non-tiebreaking reduces the complexity of find-
ing the winner set drastically as there are only linearly many possible winner sets, in 
contrast to the exponentially many subsets of C.

Observation 1  For every election E = (C,V) there are at most |C| + 1 sets that can 
be winner sets under a shortlisting rule.

3 � Shortlisting rules

In the following, we define the shortlisting rules that we study in this paper. We 
define these rules by specifying which properties a candidate has to satisfy to be 
contained in the winner sets. As before, let E = (C,V) be an election. We assume 
additionally that c1,… , cm is an enumeration of the candidates in descending order 
of approval score, i.e., such that scE(ci−1) ≥ scE(ci) for all 2 ≤ i ≤ m . We will illus-
trate all rules on the following example:

Example 1  Let E = (C,V) be an election with 10 voters and 8 candidates c1,… , c8 . 
The scores are given by sc(E) = (10, 10, 9, 8, 6, 3, 3, 0) . They are also repeated in 
Table 1.

There are seven possible winner sets for a shortlisting rule: ∅ , {c1, c2} , {c1, c2, c3} , 
{c1, c2, c3, c4} , {c1, c2,… , c5} , {c1, c2,… , c7} , {c1, c2,… , c8}.

3.1 � Established rules

First we introduce the shortlisting rules that are either commonly used in practice 
or have been proposed in the literature before. A natural idea is to select all most-
approved candidates. The corresponding winner set equals the set of co-winners of 
classical Approval Voting (Brams and Fishburn 1978).

Rule 1  (Approval Voting) A candidate c is a winner iff c’s approval score is maxi-
mal, i.e., c ∈ R(E) iff scE(c) = max(sc(E)).

The winners under Approval Voting in Example 1 are c1 and c2 as they both have 
the highest score.

Another natural way to determine the winner set is to fix some percentage thresh-
old and declaring all alternatives to be winners that surpass this approval thresh-
old  (Kilgour 2010). For example, for a baseball player to be entered into the Hall 
of Fame, more than 75% of the members of the Baseball Writers’ Association of 

Table 1   Scores from Example 1
c
1

c
2

c
3

c
4

c
5

c
6

c
7

c
8

sc
E
(⋅) 10 10 9 8 6 3 3 0
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America have to approve this nomination (BWAA 2019). Such rules are known as 
quota rules in judgment aggregation (Endriss 2016).

Rule 2  (f-Threshold) Let f ∶ ℕ → ℕ be a function such that 0 < f (|V|) < |V| . Then, 
c ∈ R(E) for an alternative c ∈ C if and only if scE(c) > f (|V|) . We write �-Thresh-
old for a constant 0 ≤ 𝛼 < 1 to denote the f-Threshold rule with f (n) = ⌊� ⋅ n⌋.

Consider for example f (|V|) = |V|
2

 . Then an alternative is a winner if it is 
approved by more than 50% of all voters. In Example 1 this would mean that the 
winner set contains all candidates with 6 or more approvals, i.e., c1,… , c5.

A sensible modification of f -Threshold would be to select all alternatives with 
an above-average approval score, i.e., the set of winners consists of all alternatives 
c with scE(c) >

1

m
⋅
∑

c�∈C scE(c
�) . This rule is also a shortlisting rule in our sense. 

However, as it will, in expectation, select half of the available candidates, we do not 
think that it is a reasonable rule in most shortlisting settings. Therefore, we do not 
study it and only mention that it might be a good rule in other voting contexts with 
a variable number of winners. For example, Duddy et al. (2016) analyzed this rule 
and concluded that it is the best rule for partitioning alternatives into homogeneous 
groups [see also the axiomatic characterization of this rule by Brandl and Peters 
(2019)].

Another natural modification is to base the threshold not on the number of voters 
but on the highest approval score achieved by a candidate. We call this Max-Score- f
-Threshold. This variant of f -Threshold turns out to be well suited to shortlisting as 
it formalizes the goal of selecting all candidates that are close to the top.

Rule 3  (Max-Score-f-Threshold) Let f ∶ ℕ → ℕ be a function such that 0 < f (x) < x . 
Then, c ∈ R(E) for an alternative c ∈ C if and only if scE(c) > f (max sc(E)) . We 
write Max-Score�-Threshold for a constant 0 ≤ 𝛼 < 1 to denote the Max-Score-
f-Threshold rule with f (n) = ⌊� ⋅ n⌋.

We observe that c1 and c2 in Example  1 have score n, hence f -Threshold and 
Max-Score- f -Threshold coincide on the example.

The next three rules are further shortlisting methods that have been proposed in 
the literature. First Majority (Kilgour 2016) includes as many alternatives as neces-
sary to comprise more than half of all approvals. The following definition deviates 
slightly from the original definition (Kilgour 2016) in that it is non-tiebreaking.

Rule 4  (First Majority) Let i be the smallest index such that ∑
j≤i scE(cj) >

∑
j>i scE(cj) . Then c ∈ R(E) if and only if scE(c) ≥ scE(ci).

The candidates in Example 1 together have 49 approvals. Therefore, a shortlist 
needs at least 25 approvals to be the First Majority winner set. The smallest shortlist 
to achieve at least 25 approvals is {c1, c2, c3} with 29 approvals.

Next-k (Brams and Kilgour 2012) is a rule that includes alternatives starting with 
the highest approval score, until a major drop in the approval scores is encountered, 
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more precisely, if the total approval score of the next k alternatives is less than the 
score of the previous alternative.

Rule 5  (Next-k) Let k be a positive integer. Then, ci ∈ R(E) if for all i′ < i it holds 
that scE(ci� ) ≤

∑k

j=1
scE(ci�+j) , where scE(ci�+j) = 0 if i� + j > m.

Consider Next-2. Then it is easy to check that, in Example  1, for all i ≤ 5 
the score of ci is smaller or equal the sum of the scores of the next two candi-
dates. For example scE(c1) = 10 ≤ 19 = scE(c2) + scE(c3) . On the other hand 
scE(c7) = 3 ≤ 0 = scE(c8) + 0 . Therefore, the winner set under Next-2 is {c1,… , c7}

.
Observe that for both Next-k and First Majority the winner set does not depend on 

the chosen enumeration of alternatives. This will hold for all voting rules introduced 
in this paper.

Faliszewski et al. (2020) discuss several other rules that satisfy our basic axioms 
called Capped Satisfaction Approval Voting (CSA), Net Approval Voting (NAV) 
and Net Capped Satisfaction Approval Voting (NCSA) which were originally pro-
posed by Brams and Kilgour (2012, 2015) as well as generalizations of these rules. 
Among these, Faliszewski et al. (2020) conclude that only the following generaliza-
tion of NCSA is practical.

Rule 6  (q-NCSA) Let q ∈ [0, 1] be a real number and S ⊆ C a set of candidates. 
Then we define the q-NCSA-score of S as4:

The winner set then is the largest set with a maximum q-NCSA-score.5

It is not immediately obvious that q-NCSA is a shortlisting rule in our sense. The 
following proposition shows that this is indeed the case q-NCSA.

Proposition 1  The q-NCSA rule has the following properties for all q ∈ [0, 1] . 

1.	 q-NCSA is a shortlisting method.
2.	 q-NCSA can be computed in polynomial time.

Proof  We prove the both statements separately:

sc
q-NCSA

E
(S) =

1

|S|q
∑

c∈S

(2scE(c) − n).

4  The given definition is different than the original definition of the q-NCSA-score by Faliszewski et al. 
(2020). However, it can be shown that both definitions are equivalent. See Appendix A for more details.
5  In the original definition of Faliszewski et  al. (2020), all sets with maximum q-NCSA-score are co-
winners. We specifically select the largest set with maximum q-NCSA-score as this choice guarantees 
that the winner set is non-tiebreaking (see Proposition 1).
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1.	 It is clear that q-NCSA satisfies Anonymity and Neutrality. Consider Efficiency: 
Assume there are two candidates ci and cj such that scE(ci) < scE(cj) , ci ∈ R(E) 
and cj ∉ R(E) . Then there must be a S ⊆ C with ci ∈ S and cj ∉ S which has maxi-
mal q-NCSA-score. However, by definition the q-NCSA-score of (S ⧵ {c1}) ∪ {cj} 
is higher than the q-NCSA-score of S. A contradiction. The non-tiebreaking prop-
erty follows from the following claim:

Claim 1  If scE(ci) = scE(ci+1) and

then also

By Efficiency, the largest set with maximum q-NCSA-score is of the 
form {c1,… , ci} for some ci . As the set has maximum q-NCSA-score, it 
holds in particular that sc

q-NCSA

E
({c1,… , ci−1}) ≤ sc

q-NCSA

E
({c1,… , ci}) . If 

scE(ci) = scE(ci+1) , i.e., if {c1,… , ci} breaks a tie, then it follows from the claim 
that scq-NCSAE ({c1,… , ci}) ≤ scq-NCSAE ({c1,… , ci+1}) . However, this is a contradiction to the 
assumption that {c1,… , ci} was the largest set with maximal q-NCSA-score. The 
proof of Claim 1 contains a lengthy calculation and can be found in the Appendix. 

2.	 As we have shown that q-NCSA is a shortlisting rules, we know that we only need 
to consider sets that are efficient and non-tiebreaking. Further, we can clearly 
compute the q-NCSA-score of a set in polynomial time. As there are at most lin-
early many potential winner sets (Observation 1), finding the one with maximum 
q-NCSA-score can be done in polynomial time.

	�  ◻

Consider again Example 1. Then, the 0.5-NCSA-score of the shortlist {c1,… , c4} 
is ((2 ⋅ 10 − 10) + (2 ⋅ 10 − 10) + (2 ⋅ 9 − 10) + (2 ⋅ 8 − 10))∕

√
4 = 17. It can be 

checked that this is the unique maximal 0.5-NCSA-score and hence {c1,… , c4} is 
the winner set under 0.5-NCSA.

Observation 2  An important feature (and downside) of q-NCSA is that candidates 
with an approval score of less than n/2 can only decrease scq-NCSA

E
(S) . Consequently, 

q-NCSA returns the empty in elections where all candidates have few approvals.

3.2 � New shortlisting rules

Let us now introduce some new shortlisting rules. Similarly to Next-k , the next two 
rules are based on the idea that one wants to make the cut between winners and 

sc
q-NCSA

E
({c1,… , ci−1}) ≤ sc

q-NCSA

E
({c1,… , ci}),

sc
q-NCSA

E
({c1,… , ci}) ≤ sc

q-NCSA

E
({c1,… , ci+1}).
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non-winners in a place where there is a large gap in the approval scores. This can 
either be the overall largest gap or the first sufficiently large gap.

Rule 7  (Largest Gap) Let i be the smallest index such that 
scE(ci) − scE(ci+1) = maxj<m(scE(cj) − scE(cj+1)) . Then c ∈ R(E) if and only if 
scE(c) ≥ scE(ci).

Note that in this definition a smallest index is guaranteed to exist due to our 
assumption that profiles are non-degenerate. In Example 1 the two largest gaps 
are between c5 and c6 and c7 and c8 , both of size 3. As we pick the smaller index, 
the winner set is {c1,… , c5}.

Rule 8  (First k-Gap) Let i be the smallest index such that scE(ci) − scE(ci+1) ≥ k . 
Then c ∈ R(E) if and only if scE(c) ≥ scE(ci) . If no such index exists, then 
R(E) = C , i.e., every alternative is a winner.

Let us consider First 2-Gap in Example 1. The gaps between c1 and c2 , c2 and 
c3 as well as between c3 and c4 are smaller than two, while the gap between c4 and 
c5 is 2. Therefore the winner set is {c1, c2, c3, c4}.

The parameter k has to capture what it means in a given shortlisting scenario 
that there is a sufficiently large gap between alternatives, which in particular 
depends on the number of voters |V| . If no further information is available, one 
can choose k by a simple probabilistic argument. Assume, for example, alterna-
tive c’s approval score is binomially distributed scE(c) ∼ B(n, qc) , where n is the 
number of voters and qc can be seen as c’s quality. We choose k such that the 
probability of events of the following type are smaller than a selected threshold 
� : two alternatives a and b have the same objective quality ( qa = qb ) but have a 
difference in their approval scores of k or more. In such a case, the First k-Gap 
rule might choose one alternative and not the other even though they are equally 
qualified, which is an undesirable outcome. For example, if n = 100 and we want 
� = 0.5 , we have to choose k ≥ 5 and if we want � = 0.1 we need k ≥ 12 . Note 
that this argument leads to rather large k-values; if further assumptions about the 
distribution of voters can be made, smaller k-values are feasible.

The voting rules above output winner sets of very different sizes (as we will 
see in the experimental evaluation, Sect. 5). It is a common case, however, that 
there is a preferred size for the winner set, but this size can be varied in order to 
avoid tiebreaking. This flexibility is especially crucial if the electorate is small 
and ties are more frequent. Based on real-world shortlisting processes, we pro-
pose a rule that deals with this scenario by accepting a preference order over set 
sizes as parameter and selecting a winner set with the most preferred size that 
does not require tiebreaking.

Rule 9  (Size Priority) Let ⊳ be a strict total order on {0,… ,m} , the priority order. 
Then R(E) = {ci ∈ C ∣ 1 ≤ i ≤ k} if and only if
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•	 either scE(ck) ≠ scE(ck+1) or k = 0 or k = m,
•	 and scE(c�) = scE(c�+1) for all 𝓁 ⊳ k.

Consider for example a strict total order of the form 1 ⊳ 6 ⊳ 0 ⊳ … . Then the set 
of Size Priority winners under ⊳ in Example 1 is the empty set, because {c1} and 
{c1,… , c6} break ties, as scE(c1) = scE(c2) and scE(c6) = scE(c7).

Size Priority is a non-tiebreaking analogue of Multi-winner Approval Voting, 
which selects the k alternatives with the highest approval score. A specific instance 
of Size Priority was used by the Hugo Award prior to 2017 with the priority order 
5 ⊳ 6 ⊳ 7…  (The Hugo Awards 2019). Generally, the choice of a priority order 
depends on the situation at hand. For award-shortlisting, typically a small number 
of alternatives is selected (the Booker Prize, e.g., has a shortlist of size 6). In a much 
more principled fashion, Amegashie (1999) argues that the optimal size of the win-
ner set for shortlisting should be proportional to 

√
m , i.e., the square root of the 

number of alternatives.
Now, how does a preferred size for the shortlist translate to a priority order? 

One possibility would be to order the possible sizes of the shortlist according to 
their distance to the most preferred size, breaking ties in some way, for example 
k ⊳ k + 1 ⊳ k − 1 ⊳ k + 2 ⊳ ⋯ . In practice, the most common priority order is 
k ⊳ k + 1 ⊳ ⋯ ⊳ m for some k < m , i.e., the smallest non-tiebreaking shortlist 
that contains at least k alternatives is selected. Another important special case are 
instances of Size Priority that rank 0 and m the lowest, i.e., that avoid return all or no 
candidates whenever possible. Therefore, we give Size Priority rules based on such 
priority orders a special name.

Definition 2  Let ⊳ be a strict total order on 0,… ,m and let k be a positive inte-
ger with k ≤ m such that k ⊳ k + 1 ⊳ ⋯ ⊳ m and m ⊳ 𝓁 for all � < k . Then, the 
Size Priority rule defined by the priority order ⊳ is an Increasing Size Priority 
rule. We will write ISP-k as a short form for the Increasing Size Priority rule with 
k ⊳ k + 1 ⊳ … as priority order.

Let ⊳ be a strict total order on 0,… ,m such that k ⊳ m and k ⊳ 0 holds for all 
0 < k < m . Then, the Size Priority rule defined by the priority order ⊳ is a Decisive 
Size Priority rule.

Other special cases of Size Priority could be defined in a similar way, for example 
Decreasing Size Priority. However, Increasing Size Priority and Decisive Size Pri-
ority are the most natural and common types of Size Priority and additionally satis-
fies better axiomatic properties than, e.g., Decreasing Size Priority.

Finally, we propose a rule that combines the ideas behind First k-Gap and Size 
Priority. In practice, we often want to have a large gap between winners and non-
winners, but not at any price in terms of the size of the shortlist.

Rule 10  (Top-s-First-k-gap) Let W ′ be the winner set for First k-Gap and W ′′ the win-
ner set for the Increasing Size Priority instance defined by the order s ⊳ s + 1 ⊳ … 
(ISP-s). If |W ′| ≤ s , return W ′ . Otherwise return W ′′.
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Consider, for example, Top-3-First-2-Gap. Then, in Example  1 we know that 
W � = {c1,… , c4} is the First-2-gap winner set. On the other hand, the shortlist 
W �� = {c1, c2, c3} is non-tiebreaking and therefore the Size Priority winner set for 
3 ⊳ 4 ⊳ … . As |W ′| > s , the winner set under Top−3−First−2−Gap is W ′′.

Let us now consider the relationships between the proposed rules.

Proposition 2  We observe the following relations between the considered voting 
rules:

•	 First k-Gap and Next-k are equivalent to Approval Voting for k = 1.
•	 ISP-1 is equivalent to Approval Voting.
•	 Top-s-First-k-Gap is equivalent to First k-Gap for s = m and it is equivalent to 

Increasing Size Priority for k = m.

Proof  First observe that First-1-Gap and Next-1 select all candidates which have 
maximal score. Now let ci be the first candidate which has less than the maximal 
score. Then scE(ci−1) − scE(ci) ≥ 1 and thus First-1-Gap selects {c1,… , ci−1} (as 
does Approval Voting). Further, scE(ci−1 > scE(ci) =

∑1

j=1
scE(ci−1+j) and thus Next-

1 selects {c1,… , ci−1} . The argument for ISP-1 is similar.
Finally, consider Top-s-First-k-Gap. If s = m , then W �� = C . Consequently, 

|W ′| ≤ |W ′′| and W ′ is thus the winner set. On the other hand, if k = m then W � = C . 
Hence, |W ′′| ≤ |W ′| and W ′′ is thus the winner set. 	�  ◻

We finally observe that q-NCSA for q = 1 is a mix of Approval Voting and f
-Threshold and for q = 0 is closely related to f -Threshold for f (n) = 1

2
n . First 

consider q = 1 . If any candidate is approved by more than 50% of the voters then 
1-NCSA is equivalent to Approval Voting, as the 1-NCSA-score equals the average 
net-approval of the candidates in the set. This score is maximized by any set only 
containing candidates with maximal approval. On the other hand, if no candidate 
has more than 50% approvals then no set has positive q-NCSA-score. Therefore, the 
empty set is the smallest set with maximal q-NCSA-score.

Now consider q = 0 . We observe that then q-NCSA-score of a set S ⊆ C is the 
sum of the net-approval of the candidates, where the net approval of a candidate 
c is scE(c) − (n − scE(c)) . Hence the 0-NCSA-score is maximized by every set that 
contains all candidates with positive net approval and an arbitrary number of candi-
dates with 0 net approval. A candidate has non-negative net approval if and only if 
2scE(c) − n ≥ 0 which is equivalent to scE(c) ≥

n

2
.6

To conclude the section, let us remark that all of the above rules can be computed 
in polynomial time. This follows immediately from their respective definitions. For 
q-NCSA, we made the argument explicit in Proposition 1.

6  This is not equivalent to f -Threshold for f (n) = 1

2
n , as candidates with exactly 1

2
n approval score are 

not included in the winner set of f -Threshold.
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4 � Axiomatic analysis

In this section, we axiomatically analyze shortlisting rules with the goal to discern 
their defining properties. First, we consider axioms that are motivated by the specific 
requirements of shortlisting, then we study well-known axioms that describe more 
generally desirable properties of voting rules. For an overview, see Table 2.

The proofs and counter-examples showing for each shortlisting rule whether it 
satisfies a specific axiom can be found in Appendix B.

4.1 � �‑Stability, unanimity, and anti‑unanimity

When shortlisting is used for the initial screening of candidates, for example for an 
award or a job interview, then we cannot assume that the voters have perfect judg-
ment. Otherwise, there would be no need for a second round of deliberation, as we 
could just choose the highest-scoring alternative as a winner. Therefore, small differ-
ences in approval may not correctly reflect which alternative is more deserving of a 
spot on the shortlist. Thus, out of fairness, we want our voting rule to treat alterna-
tives differently only if there is a significant difference in approval between them.

Axiom 5  (�-Stability) If the approval scores of two alternatives differ by less than � , 
either both or neither should be a winner, i.e., for every election E = (C,V) and can-
didates ci and cj if |scE(ci) − scE(cj)| < � then either ci, cj ∈ R(E) or ci, cj ∉ R(E).

Here, the parameter � has to capture what constitutes a significant difference in 
a given election. This will depend, for example, on the number and trustworthiness 
of the voters. Also, observe that 1-Stability equals Non-tiebreaking. Hence, we are 
only interested in �-Stability for � ≥ 2.

Now, while a small difference in approvals might not correctly reflect the rela-
tive quality of the candidates, we generally assume in shortlisting that the approval 
scores approximate the underlying quality of alternatives.7 Therefore, at a minimum, 
we want to include alternatives that are approved by everyone and exclude alterna-
tives that are approved by no one.

Axiom 6  (Unanimity) If an alternative is approved by everyone, it must be a winner, 
i.e., for every election E = (C,V) , if scE(c) = n then c ∈ R(E).

Axiom 7  (Anti-Unanimity) If an alternative is approved by no one, it cannot win, 
i.e., for every election E = (C,V) if scE(c) = 0 then c ∉ R(E).

7  The relation between approval voting and maximum likelihood estimation is analyzed in detail by Pro-
caccia and Shah (2015), in particular, under which conditions approval voting selects the most likely 
“best” alternatives.
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Unfortunately, it turns out that these three axioms are incompatible unless 
there are many more voters than alternatives. Indeed Unanimity, Anti-Unanimity 
and �-Stability can be jointly satisfied if and only if |V| ≥ l ⋅ |C| + 1.

Theorem  3  For every � there is a shortlisting rule that satisfies Unanimity, Anti-
Unanimity and �-Stability for every election E such that nE > (𝓁 − 1) ⋅ (mE − 1) . 
This is a tight bound in the following sense: For every � > 1 , there is an election 
E such that nE = (𝓁 − 1) ⋅ (mE − 1) and no shortlisting rule can satisfy Unanimity, 
Anti-Unanimity and �-Stability on E.

Proof  To show that Unanimity, Anti-Unanimity and �-Stability are jointly satisfi-
able if nE > (𝓁 − 1) ⋅ (mE − 1) , we will show that a slightly modified version of First 
k-Gap satisfies all three axioms for elections E with nE > (𝓁 − 1) ⋅ (mE − 1) . We 
define Modified First �-Gap as follows: Let c1,… , cm be an enumeration of C such 
that scE(ci−1) ≥ scE(ci) . Let i be the smallest index such that scE(ci) − scE(ci+1) ≥ � . 
Then c ∈ R(E) if and only if scE(c) ≥ scE(ci) . If no such index exists, then R(E) = � 
if there is an alternative c with scE(c) = 0 , and R(E) = C otherwise. Clearly, this 
rule still satisfies �-Stability.

Now, let E be an election such that there is an alternative c with scE(c) = n . 
Assume first that there is no alternative c′ with scE(c�) = 0 . In that case, 
Modified First �-Gap vacuously satisfies Anti-Unanimity and, by defi-
nition, also Unanimity. Now assume that there is an alternative c with 
scE(c) = 0 . We claim that there is an index i such that scE(ci) − scE(ci+1) ≥ � 
and hence only alternatives c such that scE(c) ≥ scE(ci) > � − 1 are win-
ners. Otherwise, we have scE(ci+1) ≥ scE(ci) − (� − 1) for all i < m and hence 
scE(cm) ≥ scE(c1) − (𝓁 − 1) ⋅ (m − 1) . However, as scE(c1) = n > (𝓁 − 1) ⋅ (m − 1) 
this contradicts the assumption that there is an alternative c with scE(c) = 0 , i.e., 
scE(cm) = 0.

Finally, let E be an election such that there is no alternative c with scE(c) = n . 
Then, Modified First �-Gap vacuously satisfies Unanimity. Now, if there is an alter-
native c′ with scE(c�) = 0 then we have to distinguish two cases. If there is no �
-gap, then R(E) = � by definition and hence Modified First �-Gap satisfies Anti-
Unanimity. On the other hand, if there is a �-gap, then only alternatives above the �
-gap are selected, which must have a score of � or larger. Hence, Anti-Unanimity is 
also satisfied.

Now we show the tightness of the theorem. Let E be an election with 
2 alternatives and � − 1 voters such that sc(E) = (� − 1, 0) . We observe 
nE = 𝓁 − 1 = (𝓁 − 1) ⋅ (2 − 1) . We claim that no R satisfy Unanimity, Anti-Una-
nimity and �-Stability on E. Hence, c1 ∈ R(E) must hold by Unanimity. Then 
scE(c1) − scE(c2) < � implies c2 ∈ R(E) by �-Stability, contradicting Anti-Unanim-
ity. 	�  ◻

Theorem 3 tells us that �-Stability requires some sacrifices as it is incompat-
ible with the combination of Unanimity and Anti-Unanimity. However, First k
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-Gap can be seen as an optimal compromise as, with a small modification, it sat-
isfies Anti-Unanimity whenever Theorem 3 allows it.

We observe that First k-Gap is the only voting rule considered in this paper that 
satisfies �-Stability for � > 1 : However, it is worth noting that Largest Gap satisfies 
�-Stability whenever there is an �-gap.

Next we will consider axioms that are not specific to shortlisting, but often appear 
in the voting and judgment aggregation literature to characterize “well behaved” 
aggregation techniques.

4.2 � Independence

�-Stability formalizes the idea that the length of a shortlist should take the magni-
tude of difference between approval scores into account. This contradicts an idea 
that is often considered in judgment aggregation, namely that all alternatives should 
be treated independently (Endriss 2016).

Axiom 8  (Independence) If an alternative is approved by exactly the same voters 
in two elections then it must be a winner either in both or in neither. That is, for 
an alternative c, and two elections E = (C,V) and E∗ = (C,V∗) with |V| = |V∗| 
and c ∈ vi if and only if c ∈ v∗

i
 for all i ≤ n , it holds that c ∈ R(E) if and only if 

c ∈ R(E∗).

f -Threshold rules are the only rules in our paper satisfying Independence. Indeed, 
Independence characterizes f -Threshold rules, except for some edge cases that are 
not interesting in practice.

Theorem 4  Given a fixed set of alternatives C, every shortlisting rule that satisfies 
Independence is either a f -Threshold rule for some function f, always returns the 
empty set or always returns the full set C.

Proof  Let R be a voting rule that satisfies Anonymity and Independence. Then we 
claim that for two elections E = (C,V) and E∗ = (C,V∗) with |V| = |V∗| and an 
alternative ci ∈ C we have that scE(ci) = scE∗ (ci) implies that either ci ∈ R(E),R(E∗) 
or ci ∉ R(E),R(E∗) . If scE(ci) = scE∗ (ci) , then there is a permutation 
� ∶ {1,… , n} → {1,… , n} such that ci ∈ vi if and only if ci ∈ v∗

�(i)
 . Now, let 

E� = (C,�(V)) . Then, by Anonymity, ci ∈ R(E) if and only if ci ∈ R(E�) . Now, as ci 
is approved by the same voters in E′ and E∗ , Independence implies ci ∈ R(E�) if and 
only if ci ∈ R(E∗).

Now, let E = (C,V) and E∗ = (C,V∗) be two elections with |V| = |V∗| . Fur-
thermore, assume ci ∈ R(E) and scE(ci) < scE∗ (ci) . We claim that this implies 
ci ∈ R(E∗) . By Independence, we can assume w.l.o.g. that there is an alternative cj 
such that scE(cj) = scE∗ (ci) . Then, by Efficiency, cj ∈ R(E∗) . Now, let E′ be the same 
election as E but with ci and cj switched. Then by Neutrality we have ci ∈ R(E�) . 
As by definition scE� (ci) = scE∗ (ci) this implies ci ∈ R(E∗) by Anonymity and 
Independence.
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The two arguments above mean that for every alternative ci and n ∈ ℕ there is a k 
such that for all elections E = (C,V) with |V| = n we know ci ∈ R(E) if and only if 
scE(ci) ≥ k . If R also satisfies Neutrality, then k must be the same for every ci ∈ C . 
Finally, if we have 0 < k ≥ n , then R is a Threshold rule, if k > n , then R always 
returns the empty set and if k = 0 , then R always returns C. 	�  ◻

In light of Theorem  4, Independence seems to be a very strong requirement, 
therefore we also consider the axiom Independence of Losing Alternatives which 
can be seen as a weakening of Independence. It states that removing a non-winning 
alternative cannot change the outcome of an election.

Axiom 9  (Independence of Losing Alternatives) Let E = (C,V) with V = (v1,… , vn) 
and E∗ = (C∗,V∗) where C∗ = C⧵{c∗} and V∗ = (v∗

1
,… , v∗

n
) be two elections such 

that c∗ ∉ R(E) and v∗
i
= vi⧵{c

∗} for all i ≤ n . Then R(E) = R(E∗).

For Size Priority we encounter a difficulty: Independence of Losing Alternatives 
cannot be applied to Size Priority because each instance of Size Priority is defined 
by a linear order on 0,… ,m and decreasing the number of alternatives necessitates 
a different order. We can deal with this problem by defining classes of Size Priority 
instances:

Definition 3  Let ⊳ be a strict total order on ℕ . Then the class of Size Priority 
instances defined by ⊳ contains for every number of alternatives m the Size Priority 
instance given by the restriction of ⊳ to {0, 1,… ,m}.

We say that the class of Size Priority instances defined by ⊳ is a class of Increas-
ing Size Priority instances if every Size Priority instance in the class is an Increas-
ing Size Priority instance.

This definition allows us to ask whether classes of Size Priority instances (defined 
by ⊳ ) satisfies Independence of Losing Alternatives.

4.3 � Stability of outcomes: resistance to clones and monotonicity

Next, we consider three classic axioms of social choice theory, namely Resistance to 
Clones (Tideman 1987) and two monotonicity axioms (Zwicker and Moulin 2016) 
adapted to the shortlisting setting. All three axioms formalize the idea that there are 
specific changes of the election instance that should not change the outcome.

First we consider Resistance to Clones. In many shortlisting scenarios, for exam-
ple in the context of recommender systems, it is not always clear if alternatives 
should be bundled together. For example, if we want to select a number of books to 
recommend, should we include each part of a trilogy separately or bundle the whole 
series? Shortlisting rules that satisfy Resistance to Clones are useful because the 
outcome of the rule is the same in both cases (if all parts of the series are equally 
popular).
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Axiom 10  (Resistance to Clones) Adding a clone of an alternative to an election 
does not change the outcome, i.e., if E = (C,V) and E∗ = (C ∪ {c∗},V∗) are two 
elections with |V| = |V∗| such that, for all j ≤ n , we have ci ∈ vj if and only if ci ∈ v∗

j
 

for all ci ∈ C and c∗ ∈ v∗
j
 if and only if ck ∈ vj for some k ≤ m , then R(E) = R(E∗) 

if ck ∉ R(E) and R(E∗) = R(E) ∪ {c∗} if ck ∈ R(E).

The first monotonicity axiom we consider is Set Monotonicity. It states that 
if one voter additionally approves the winner set, this must not change the 
outcome.

Axiom 11  (Set Monotonicity) For any two elections E = (C,V) and E∗ = (C,V∗) 
with V = (v1,… , vn) and V∗ = (v∗

1
,… , v∗

n
) , if there exists a j ≤ n such that 

vj ∩R(E) = � , v∗
j
= vj ∪R(E) and v∗

l
= vl for all l ≠ j , then R(E∗) = R(E).

All of our rules except First Majority and Max-Score- f -Threshold with non-
constant threshold function satisfy Set Monotonicity. Set Monotonicity is a 
very natural axiom for many applications, so the fact that First Majority does 
not satisfy it makes it hard to recommend the rule in most situations. We can 
strengthen this axiom as follows: a voter that previously disapproved all win-
ning alternatives changes her mind and now approves a superset of all (previ-
ously) winning alternatives; this should not change the set of winning alterna-
tives. This is a useful property as it guarantees that if an additional voter enters 
the election, who agrees with the set of currently winning alternatives but might 
approve additional alternatives, then the set of winning alternatives remains the 
same and, in particular, does not expand.

Axiom 12  (Superset Monotonicity) Let E = (C,V = (v1,… , vn)) be an election. If 
E∗ = (C,V∗ = (v∗

1
,… , v∗

n
)) is another election such that for some j ≤ n we have 

vj ∩R(E) = � , R(E) ⊆ v∗
j
 and v∗

l
= vl for all l ≠ j , then R(E) = R(E∗).

In contrast to Set Monotonicity, only few rules satisfy Superset Monotonic-
ity. Increasing Size Priority satisfies Superset Monotonicity as any ties between 
winners remain. Moreover, as the size of the gap between winners and non-win-
ners cannot decrease and gaps within the winner set remain, First k-Gap satis-
fies Superset Monotonicity for all k (which includes Approval Voting). For this 
reason Top-s-First-k-Gap also satisfies Superset Monotonicity by an analogous 
argument as for Set Monotonicity.

In general, the axioms discussed in this section can be seen as axioms 
about the stability of the winner set under specific changes to the election. We 
observed that First Majority and, to a lesser degree, Size Priority and Next-k did 
not perform well in this regard. On the other hand, it seems that the winner set 
of First k-Gap and Approval Voting are particularly stable, as they are the only 
rule that satisfies all three axioms considered in this section.
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4.4 � Minimal voting rules

The goal of shortlisting is to reduce a set of alternatives to a more manageable set 
of alternatives. It is therefore desirable that shortlisting rules produce short short-
lists, without compromising on quality. To formalize this desideratum we define 
the concept of a minimal voting rule that satisfies a set of axioms.

Definition 4  Let A be a set of axioms and let S(A) be the set of all voting rules satis-
fying all axioms in A . Then, we say a voting rule is a minimal voting rule R for A if 
for all elections E it holds that R(E) =

⋂
R

∗∈S(A) R
∗(E).

We observe that in general a minimal voting rule R for a set of axioms A does 
not satisfy all axioms in A . Consider, e.g., the following axiom:

Axiom 13  (Determined) Every election must have at least one winner, i.e., for all 
elections E we have R(E) ≠ �.

Observe that, besides f -Threshold, q-NCSA and Size Priority, all voting rules 
considered in this paper are determined by definition.

Now, let us consider arbitrary voting rules with a variable number of winners, 
i.e., not only shortlisting rules. Then for every c ∈ C the rule Rc that always out-
puts the set {c} is a determined voting rule. It follows that the minimal determined 
voting rule always outputs the empty set and is hence not determined. In contrast, 
for shortlisting rules the following holds.

Proposition 5  Let A be a set of axioms that contains the four basic shortlisting axi-
oms (Axioms 1–4). Then the minimal voting rule for A is again a shortlisting rule, 
i.e., it satisfies Axioms 1–4.

Proof  Let A be a set of axioms and let R be the minimal voting rule for A . It is 
straightforward to see that R satisfies Neutrality and Anonymity. We show that R 
also satisfies Efficiency and is non-tiebreaking. Let E be an election. As every rule 
in S(A) is a shortlisting rule, there is a kR∗ ∈ {0,… ,m} for every rule R∗ ∈ S(A) 
such that R∗(E) = {c1,… , ckR∗

} . Now let km be the smallest k such that there is a 
rule R∗ ∈ S(A) with R∗(E) = {c1,… , ck} . Then, by definition R(E) = R

∗(E) . As 
R

∗(E) does not violate Efficiency and non-tiebreaking for E, neither does R . As this 
argument holds for arbitrary elections, R satisfies Efficiency and is non-tiebreaking. 	
� ◻

As the voting rule that always outputs the empty set is a shortlisting rule, it 
is also the minimal shortlisting rule (without additional axioms). Therefore, we 
need to assume additional axioms. We first look at determined and �-stable short-
listing rules.
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Theorem 6  Approval Voting is the minimal voting rule that is efficient, non-tiebreak-
ing and determined. Furthermore, for every positive integer k, First k-Gap is the 
minimal voting rule that is efficient, k-stable and determined.

Proof  Let A be the set { Efficiency , k-Stability , Determined } and R be First k-
Gap. We know that First k-Gap is efficient, k-stable and determined, therefore we 
know 

⋂
R

∗∈S(A) R
∗(E) ⊆ R(E).

Now, every determined voting rule must have a non-empty set of winners. If 
the voting rule is efficient, the set of winners must contain at least one top ranked 
alternative. Now, consider an enumeration of the alternatives c1,… , cm such 
that scE(cj) ≥ scE(cj+1) holds for all j. If a voting rule is k-stable, a winner set 
containing one top ranked alternative must contain all alternatives ci for which 
scE(cj) < scE(cj+1) + k holds for all j < i . By the definition of First k-Gap this 
implies R(E) ⊆

⋂
R

∗∈S(A) R
∗(E).

The minimality of Approval Voting is a special case of the minimality of First 
k-Gap, as 1-Stability equals Non-tiebreaking and First-1-Gap is equivalent to 
Approval Voting. 	� ◻

This result is another strong indication that First k-Gap is promising from an axi-
omatic standpoint. It produces shortlists that are as short as possible without violat-
ing k-Stability, an axiom that is desirable in many shortlisting scenarios.

Let us now consider larger sets of axioms. First, observe that for every set of axi-
oms A , adding any axiom that is already satisfied by the minimal voting rule for A 
does not change the minimal voting rule.

Proposition 7  Let A be a set of axioms, let R be the minimal voting rule for A 
and let A be an axiom that is satisfied by R . Then R is the minimal voting rule for 
A ∪ {A}.

Proof  First, observe that R satisfies A and therefore R ∈ S(A ∪ {A}) . Moreover, by 
definition S(A ∪ {A}) ⊆ S(A) . It follows that for all elections E we have

	�  ◻

As Approval Voting satisfies all axioms studied in this paper except �-Stabil-
ity and Independence, it is the minimal determined shortlisting rule for each set of 
axioms not containing �-Stability or Independence. Moreover, First k-Gap satisfies 
every axiom except Anti-Unanimity and Independence. Therefore, it is the minimal 
�-stable shortlisting for every set of axioms not containing Anti-Unanimity or Inde-
pendence. Now, we observe that Determined and Efficiency together clearly imply 
Unanimity. As we know from Theorem 3 that there is no shortlisting rule that satis-
fies �-Stability, Unanimity and Anti-Unanimity, there is also no minimal shortlisting 
rule that is determined and satisfies �-Stability and Anti-Unanimity.

R(E) ⊇
⋂

R
∗∈S(A∪{A})

R
∗(E) ⊇

⋂

R
∗∈S(A)

R
∗(E) = R(E).
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Finally, the rule constantly returning the empty set is a shortlisting rule that sat-
isfies independence, hence it is also the minimal rule satisfying our basic axioms 
and Independence. Additionally, it follows from Theorem 4 that the only determined 
rule that satisfies Independence is the rule that always returns the set of all candi-
dates. Therefore, it is the unique rule in the set S(A) where A consists of Anonymity, 
Neutrality, Non-tiebreaking, Efficiency, Determined and Independence and hence 
also the minimal rule for A.

In summary, we can characterize the minimal voting rule for any subset of the 
axioms considered in this paper that at least contains our four basic axioms as well 
as Determined as follows:

Theorem 8  Let A be a subset of the axioms consider in this paper such that A con-
tains Neutrality, Anonymity, Efficiency, Non-tiebreaking and Determined. Then the 
minimal voting rule for A

•	 is Approval Voting if A contains neither Independence nor �-Stability.
•	 is First k-Gap if A contains �-Stability and neither Independence nor Anti-Una-

nimity.
•	 is the rule always returning all candidates if A contains Independence.
•	 does not exist if A contains both �-Stability and Anti-Unanimity.

5 � Experiments

In numerical experiments, we want to evaluate the characteristics of the considered 
shortlisting rules. The Python code used to run these experiments is available (Lack-
ner and Maly 2022). We use three data sets for our experiments: two synthetic data 
sets (“bias model” and “noise model”) as well as data from a real-world shortlisting 
scenario, the nomination process for the Hugo awards.

5.1 � Synthetic data

5.1.1 � Basic setup

Both synthetic data sets have the same basic setup. We assume a shortlisting sce-
nario with 100 voters and 30 alternatives. Each alternative c has an objective 
quality qc , which is a real number in [0,  1]. For each alternative, we generate qc 
from a truncated normal (Gauss) distribution with mean 0.75 and standard devia-
tion 0.2, restricted to values in [0,  1]. This is chosen to model difficult shortlist-
ing scenarios with several strong candidates (with an objective quality qc close to 
1). Our base assumption is that voters approve an alternative with likelihood qc . 
Thus, the approval score of alternatives are binomially distributed, specifically 
scE(c) ∼ B(100, qc) . We then modify this assumption to study two complications for 
shortlisting: imperfect quality estimates (noise) and biased voters.
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5.1.2 � The noise model

This model is controlled by a variable � ∈ [0, 1] . We assume that voters do not per-
fectly perceive the quality of alternatives, but with increasing � fail to differenti-
ate between alternatives. Instead of our base assumption that each voter approves 
an alternative c with likelihood qc , we change this likelihood to (1 − �)qc + 0.5� . 
Thus, for � = 0 this model coincides with our base assumption; for � = 1 we have 
complete noise, i.e., all alternatives are approved with likelihood 0.5. As � increases 
from 0 to 1, the amount of noise increases, or, in other words, the voters become less 
able to judge the quality of alternatives.

5.1.3 � The bias model

In this model we assume that a proportion of the voters are biased against (roughly) 
half of the alternatives; we call these alternatives disadvantaged. Biased voters 
approve these alternatives only with likelihood 0.5 ⋅ qc , i.e., they perceive their qual-
ity as only half of their true quality. We assign each alternative with likelihood 0.5 
to the set of disadvantaged alternatives. In addition, the alternative with the high-
est quality is always disadvantaged.8 We control the amount of bias via a variable 
� ∈ [0, 1] : a subset of voters of size ⌊100 ⋅ �⌋ is biased; for the remaining voters our 
base assumption applies. As in the noise model, as � increases from 0 to 1 the short-
listing task becomes harder as the approval scores less and less reflects the actual 
quality of alternatives.

5.1.4 � Instances

For each of the two models, we generate 1,  000 instances for each 
� ∈ {0, 0.05, 0.1,… , 0.95, 1} , thus resulting in 20,000 instances per model.

5.2 � The Hugo awards data set

The Hugo Awards are annual awards for works in science-fiction. Each year, awards 
are given in roughly 20 categories. The Hugo awards are particularly interesting for 
our paper as the nomination of candidates is based on voting and the submitted votes 
are made publicly available (this distinguishes the Hugo awards from many other 
literary awards with confidential nomination procedures).

The Hugo shortlisting (nomination) process works as follows. Each voter can 
nominate up to five candidates per category. This yields an approval-based election 
exactly as defined in Sect. 2. For each category, a shortlist of (usually) six candi-
dates is selected. This shortlist, however, does not necessarily consist of the six can-
didates with the largest approval scores. Instead, a voting rule called “E Pluribus 
Hugo” is used. This is not a shortlisting rule in our sense (Definition  1), since it 

8  We make this assumption because a bias only against low-quality alternatives is actually helpful for the 
shortlisting task—this effect would distort the negative consequences of bias.
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is not Non-tiebreaking and fails Efficiency.9 However, “E Pluribus Hugo” gener-
ally selects candidates with high approval scores and hence the actual winners are 
always among the top-seven candidates with the largest approval scores. In Fig. 1, 
we display in which position (when sorted by approval scores) the actual winner 
in the second stage is found. Note that there are three instances where a candidate 
in position 7 is winning. As “E Pluribus Hugo” always selects six candidates, this 
shows that either Non-tiebreaking or Efficiency is violated in these instances.

Our data set is based on the years 2018–2021, comprising a total of 78 short-
listing elections. The voting data for these years is publicly available on the Hugo 
website (https://​www.​thehu​goawa​rds.​org/). For each election we recorded the actual 
winner in the second stage (also based on voting, but with a different, larger set of 
voters). The data files are available along-side our code (Lackner and Maly 2022).

In a sense this is an ideal data set to test our results, as the scenario exactly 
matches our formal model. However, there are two caveats to be noted. First, the 
true winner is always among the first seven candidates. Thus, ISP-7 will always 
select a shortlist containing the true winner. Conversely, any shortlisting rule that 
outputs shortlists with more than seven candidates is non-optimal on this data set. 
This peculiarity has to be kept in mind when interpreting our results.

Fig. 1   Shortlist positions of the actual winners when sorted by approval scores

9  We briefly describe “E Pluribus Hugo”. This is an approval-based variable multi-winner rule based on 
an elimination process with two scores: approval scores and fractional approval scores. Let 
NE(c) = {i ∈ N ∶ c ∈ vi} . Fractional approval scores are defined as fscE(cj) =

∑
i∈NE (cj)

1

�vi�
 , i.e., voters 

can contribute at most 1 to the total score of all candidates. Each round the two candidates with the low-
est fractional approval scores are selected. Out of these two, the one with the lower approval score is 
eliminated. This step is repeated with a reduced set of candidates (and updated fractional approval 
scores) until only six candidates remain. We omit details how ties are handled in this process and refer to 
Quinn and Schneier (2016), who introduced “E Pluribus Hugo” under the name SDV-LPE. This paper 
also contains a discussion of why this rule was chosen (in reaction to strategic voting in previous years) 
and its merits for this specific application.

https://www.thehugoawards.org/
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Secondly, the shortlisting process of the Hugo awards has been a contentious 
matter with recorded attempts of organized strategic voting [this is described briefly 
by Quinn and Schneier (2016)]. As a consequence, the voting results in the shortlist-
ing stage can differ significantly from the results in the second stage (with a much 
larger set of voters). It is therefore reasonable to assume that this data set contains 
“hard” instances, i.e., it is difficult to find short shortlists.

5.3 � Precision and average size

We use two metrics to evaluate shortlisting rules. To be able to speak about success-
ful shortlisting, we assume that we know for each shortlisting instance E

�
 the actual 

winner in the second stage, i.e., the candidate that is the winner among shortlisted 
candidates; let this candidate be c∗

�
 . For the synthetic data sets, c∗

�
 is the candidate 

with the highest objective quality; for the Hugo data set it is the candidate that actu-
ally won the Hugo award (which was selected from the shortlisted candidates).

Given a set of shortlisting instances {E1,… ,EN} , we evaluate a shortlisting rule 
R with respect to the following two metrics. 

1.	 Precision is the true winner ( c∗
�
 ) being contained in R ’s winner sets: 

2.	 Average size is the average size of R ’s winner sets: 

A shortlisting is desirable if it has a high precision and small average size. However, 
observe that these two metrics are difficult to reconcile. The easiest way to achieve 
high precision is to output large shortlists, and conversely, a small average size will 
likely result in a lower precision.10

5.4 � Experiment 1: increasing noise and bias

Experiment  1 applies only to the two synthetic data sets. The goal is to see how 
different shortlisting rules deal with increasingly noisy/biased data. We restrict our 
attention to six shortlisting rules, for which the results are particularly instructive: 
Approval Voting, First 5-Gap, f -Threshold, Size Priority, First Majority, Top-10-
First-5-Gap, Largest Gap, and 0.5-NCSA. For Size Priority, we use the priority 

(1)
1

N
⋅
|||
{
1 ≤ 𝓁 ≤ N ∶ c∗

𝓁
∈ R(E

𝓁
)
}|||.

(2)1

N

N∑

�=1

|R(Ei)|.

10  One could even use these two metrics to define shortlisting rules as a bicriteria optimization problem, 
i.e., to find a shortlist that has a large precision and small size. Note, however, that this approach requires 
two non-trivial choices: (i) a function estimating precision based on scE , and (ii) a method for balancing 
these two objectives (e.g., by weighting precision and size). While this approach is interesting, we view it 
as impractical due to these rather technical choices.
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order 4 ⊳ 5 ⊳ 6 ⊳… , i.e., we use the ISP-4 rule. Finally, we choose 0.5n-Thresh-
old as representative for threshold rules. The results for Max-Score-f-Threshold with 
f (x) = 0.5x were very similar to 0.5n-Threshold and are thus omitted.

Our comparison of shortlisting rules is visualized in Fig. 2 for the noise model 
and Fig. 3 for the bias model. Each data point in these figures (corresponding to a 
specific � ) is based on N = 1000 instances E1,… ,EN.

The orthogonal nature of precision and average seen can be seen clearly when 
comparing Approval Voting and 0.5n-Threshold: Approval Voting returns rather 
small winner sets (as seen in Figs. 2b and 3b), but if � increases, the objectively best 
alternative is often not contained in the winner set (Figs. 2a and 3a). 0.5n-Threshold 
has large winner sets, but is likely to contain the objectively best alternative even 
for large � (up to � ≈ 0.8 ). If the average size of winner sets remains roughly con-
stant (Increasing Size Priority, First Majority, Approval Voting), then the precision 
reduces with increasing noise/bias ( �).

Fig. 2   Numerical simulations for the noise model

Fig. 3   Numerical simulations for the bias model
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Size Priority (with the considered priority order) is a noteworthy alternative to 
Approval Voting. It has an only slightly larger average size (roughly 1 vs 4), while 
having a significantly larger chance to include the objectively best alternative. As it 
is generally not necessary to have extremely small winner sets in shortlisting pro-
cesses, we view Size Priority (with a sensibly chosen priority order) as superior to 
Approval Voting.

Considering the noise model (Fig. 2), we see a very interesting property of First 5
-Gap: it is the only rule where the size of winner sets significantly adjusts to increas-
ing noise. If � increases, the differences between the approval scores vanishes and 
thus fewer 5-gaps exist. As a consequence, the winner sets increase in size. This is 
a highly desirable behavior, as it allows First 5-Gap to maintain a high likelihood of 
containing the objectively best alternative without producing very large shortlists for 
low-noise instances.

Two other rules also show this behavior: Top-10-First-5-Gap and First Majority, 
albeit both to only a small degree. Top-10-First-5-Gap achieves the same precision 
as First 5-Gap until � reaches ≈ 0.5 after which its precision deteriorates. On the 
other hand, note that Top-10-First-5-Gap has a considerably smaller average size. 
For Largest Gap, 0.5n-Threshold, and q-NCSA, we see the opposite effect: winner 
sets are large for low noise but decrease with increasing � . This is not a sensible 
behavior; note that First Majority achieves better precision with much smaller aver-
age size.

For the bias model, we do not observe any shortlisting rule that reacts to an 
increase in bias with a larger average size.

To sum up, our experiments show the behavior of shortlisting rules with accu-
rate and inaccurate voters, and the tradeoff between large and small winner set 
sizes. In these experiments, we see two shortlisting rules with particularly favorable 
characteristics: 

1.	 Size Priority produces small winner sets with good precision. Thus, it shows a 
certain robustness to a noisy selection process, as is desirable in shortlisting set-
tings.

2.	 First k-Gap manages to adapt in high-noise settings by increasing the winner set 
size, the only rule with this distinct feature. This makes it particularly recom-
mendable in settings with unclear outcomes (few or many best alternatives), 
where a flexible shortlisting method is required. As we will see in the next experi-
ment, however, First k-Gap on its own can be insufficient, which leads us to 
recommending the related Top-s-First-k-Gap rule instead.

5.5 � Experiment 2: tradeoffs between precision and size

In this second experiment, we want to study the tradeoff between precision and 
size in more depth and for many more shortlisting rules. Here, we put particular 
emphasis on the Hugo data set (but also consider both synthetic sets). To this end, 
we represent shortlisting rules as points in a two-dimensional plane with average 
size as x-axis and precision as y-axis. Figure 4 shows these results for the Hugo 
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data set (points are averaged over 78 instances), Fig.  5 shows these results for 
the noise data set (no noise to moderate noise, i.e., � ∈ [0, 0.5] , yielding 10,000 
instances), and Fig. 6 for the bias model (also for � ∈ [0, 0.5] , 10,000 instances).

These plots can be understood as follows. Ideal shortlisting rules lie in the top 
left corner (high precision, low average size). As this is generally unachievable, 
we have to choose a compromise between the two metrics. The gray area shows 
the space in which such a compromise has to be found (when choosing from 
shortlisting rules that are studied in this paper).

We will now explain the gray area in more detail: For Experiment 2, we con-
sider all shortlisting rules defined in Sect. 3 with the following parameters. For 
� ∈ {0, 0.01, 0.02,… , 1} , we consider

•	 Next-k for k ∈ {2, 3},
•	 f -Threshold and Max-Score-f-Threshold with f (n) = ⌊� ⋅ n⌋,
•	 q-NCSA with q = �,
•	 First k-Gap with k = ⌊� ⋅ n⌋ and with k = ⌊� ⋅max sc(E)⌋,
•	 Increasing Size Priority with priority orders of the form s ⊳ s + 1 ⊳… (ISP-s) 

for 2 ≤ s ≤ m,
•	 Top-s-First-k-Gap with 2 ≤ s ≤ m and k ∈ {⌊� ⋅ n⌋, ⌊� ⋅max sc(E)⌋}.

Each shortlisting rule yields a point in this two-dimensional space. Shortlisting 
rules with one parameter are displayed as lines. We can compute a Pareto frontier 
consisting of all points that do not have another point above and to the left of it. 
The boundary of the gray area shows this Pareto frontier. Consequently, voting 
rules close to this frontier represent a more beneficial tradeoff between precision 
and average size.

Fig. 4   Results for the Hugo data set (Experiment 2)
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5.5.1 � Results for the Hugo data set

When looking at Fig. 4, we see as expected that ISP-7 achieves a precision of 1 
and an average size slightly above 7 (due to ties). We furthermore see that ISP-4, 
ISP-5, and ISP-6 are all very close to the Pareto frontier. This raises the ques-
tion whether Increasing Size Priority is an ideal choice for this data set. While 
this class is a good choice, it can be improved by Top-s-First-k-Gap. In Table 3, 
we exemplarily show the precision and average size values for ISP-6, and ISP-7 
alongside shortlisting rules that achieve a smaller average size with the same (or 
better) precision. This table gives an indication how to use Top-s-First-k-Gapin a 
real-world shortlisting task: First, choose a sensible maximum size of a shortlist; 
in the case of Hugo awards this was chosen to be six (and was five prior to 2017). 
Then, identify a bound that constitutes a significant gap; this bound can be cho-
sen conservatively. In the Hugo data set, a sensible choice appears to be 30% of 
voters. That is, if we encounter a gap (in the sense of First k-Gap) in (E) of more 
than 0.3n, we cut the shortlist at this point if this leads to a shorter shortlist.

Let us now consider other shortlisting rules. We see that Max-Score- f -Thresh-
old closely traces the Pareto frontier and thus is a very good choice for selecting 
a compromise between precision and average size. f -Threshold and First k-Gap 
are less convincing. q-NCSA performs even worse, as very often candidates have 
approval scores of less than 0.5n. Therefore q-NCSA selects mostly empty sets 
and is thus not visible in Fig. 4 (cf. Observation 2). A notable unparameterized 
rule is First Majority, which is very close to the Pareto frontier.

To sum up our results for the Hugo data set, we identify the following shortlist-
ing rules as particularly suitable. Top-7-First-⌊� ⋅ n⌋-Gap for � ∈ [0.27, 0.30] and 
Top-7-First-⌊0.69 ⋅max sc(E)⌋-Gap achieve a precision of 1 with the smallest aver-
age size (7.051); in Fig.  4 these rules correspond to the point labeled “optimal 
rules”. In general, Increasing Size Priority and Max-Score- f -Threshold achieve a 
very good compromises between precision and average size.

Table 3   Shortlisting rules that are superior to ISP-6 and ISP-7 in the Hugo data set

Shortlisting rule Average size Precision

ISP-7 7.205 1.000
Top-7-First-⌊� ⋅ n⌋-Gap for � ∈ [0.31, 0.39] 7.128 1.000
Top-7-First-⌊� ⋅max sc(E)⌋-Gap for � ∈ [0.70, 0.72] 7.128 1.000
Top-7-First-⌊� ⋅ n⌋-Gap for � ∈ [0.27, 0.30] 7.051 1.000
Top-7-First-⌊� ⋅max sc(E)⌋-Gap for � = 0.69 7.051 1.000
ISP-6 6.090 0.987
Top-6-First-⌊� ⋅ n⌋-Gap for � ∈ [0.31, 0.39] 6.026 0.987
Top-6-First-⌊� ⋅max sc(E)⌋-Gap for � ∈ [0.70, 0.72] 6.026 0.987
Top-6-First-⌊� ⋅ n⌋-Gap for � ∈ [0.27, 0.30] 5.962 0.987
Top-6-First-⌊� ⋅max sc(E)⌋-Gap for � = 0.69 5.962 0.987
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5.5.2 � Results for the noise and bias models

Figure  5 shows the results for the noise model. We see that also here Increasing 
Size Priority and Max-Score- f -Threshold are very close to the Pareto frontier. The 
same holds for First Majority. A major difference to the Hugo data set is the per-
formance of q-NCSA. As candidates generally have approval scores of more than 

Fig. 5   Results for the noise model (Experiment 2)

Fig. 6   Results for the bias model (Experiment 2)
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0.5n, q-NCSAworks as intended with points close to the Pareto frontier. As before, f
-Threshold and First k-Gap are less convincing.

The bias model is a scenario, where some high-quality candidates receive too few 
approvals. In Fig. 6, we see that this is a tough problem. The only recommendable 
shortlisting rules are Increasing Size Priority rules. By simply shortlisting the top-k 
candidates, there is a certain chance to also shortlist high-quality but disadvantaged 
candidates. We remark that the Pareto frontier between ISP–points is due to Top-s
-First-k-Gap rules.

6 � Discussion

We conclude this paper by condensing our analysis to obtain recommendations for 
shortlisting methods. First, however, we briefly discuss a connection between clus-
tering algorithms and shortlisting.

6.1 � Clustering algorithms as shortlisting methods

One can view the goal of shortlisting as classifying some alternatives as most suit-
able. The machine learning literature offers a wide variety of clustering algorithms 
that can perform such a classification. In the following, we describe how clustering 
algorithms can be translated into an approval-based variable multi-winner rule that 
satisfies Anonymity. For most clustering algorithms, the corresponding rule also 
satisfies Neutrality, Efficiency and is non-tiebreaking, and thus yields a shortlist-
ing method. The procedure works as follows: We use sc(E) as input for a clustering 
algorithm (but these scores could also be derived from sources other than approval 
ballots). The clustering algorithm produces a partition S1,… , S� of sc(E) . We define 
the winner set as the set S ∈ {S1,… , S�} that contains the highest score, or, to be 
more precise, the winner set consists of those candidates whose scores are contained 
in S.

As this procedure is based on sc(E) , the resulting approval-based variable multi-
winner rule is clearly anonymous. To show that the resulting rule is a shortlisting 
rule, we require the following two additional assumptions: 

1.	 The clustering algorithm yields the same result for any permutation of sc(E) . If 
this is the case, the resulting rule is also neutral.

2.	 The algorithm outputs clusters that are non-intersecting intervals. If this is the 
case, the result rule is non-tiebreaking (since clusters do not intersect). It is also 
efficient, as the “winning” cluster is an interval containing the largest score.

These are indeed conditions that any reasonable clustering algorithm satisfies.
As an illustration, let us consider linkage-based algorithms  (Shalev-Shwartz 

and Ben-David 2014). Linkage-based algorithms work in rounds and start with 
the partition of sc(E) into singletons. Then, in each round, two sets (clusters) are 
merged until a stopping criterion is satisfied. One important type of linkage-based 
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algorithms are those where always the two clusters with minimum distance are 
merged. Thus, such algorithms are specified by two features: a distance metric 
for sets (to select the next sets to be merged) and a stopping criterion. We assume 
that if two or more pairs of sets have the same distance, then the pair contain-
ing the smallest element are merged. Following Shalev-Shwartz and Ben-David 
(2014), we consider three distance measures: the minimum distance between sets 
(Single Linkage):

the average distance between sets (Average Linkage)

and the maximum distance between sets (Max Linkage)

These three methods can be combined with arbitrary stopping criteria; we consider 
two: (A)  stopping as soon as only �  clusters remain, and (B)  stopping as soon as 
every pair of clusters has a distance of ≥ � . Interestingly, two of our previously pro-
posed methods correspond to linkage-based algorithms: First, if we combine the 
minimum distance with stopping criterion (A) for � = 2 , we obtain the Largest Gap 
rule. Secondly, if we use the minimum distance and impose a distance upper-bound 
of � = k (stopping criterion B), we obtain the First k-Gap rule. Another interesting 
method resulting from this approach is combining stopping criterion (A) with � = k : 
this method results in winner sets of size roughly m/k and is thus related to Size 
Priority.

We see that the literature on clustering algorithms yields a large number of short-
listing methods. The inherent disadvantage of this approach is that cluster algo-
rithms generally treat all clusters as equally important whereas for shortlisting meth-
ods the winning set of candidates is clearly most important. This difference becomes 
most pronounced when a clustering algorithm produces several clusters; only the 
“winning” cluster is relevant for the resulting shortlisting method, all further clusters 
are irrelevant for shortlisting.

On the other hand, clustering algorithms are more flexible and are suitable for 
more complex inputs than sc(E) , e.g., more-dimensional input. If the quality of can-
didates is measured by several numeric scales (possibly only one of them related to 
voting), the flexibility of clustering algorithms becomes relevant. In addition, the 
work on fair clustering (Chhabra et al. 2021) can be relevant for shortlisting. Fair-
ness in this context generally refers to additional constraints on valid clusterings. 
An example could be the requirement that a book shortlist should contain an equal 
proportion of fiction and non-fiction. Note that such constraints are concerned with 
fairness for candidates and not voters. Also, such constraints are in conflict with our 

(3)dmin(A,B) = min {|x − y| ∶ x ∈ A, y ∈ B},

(4)daver(A,B) =
1

|A||B|
∑

x∈A,y∈B

|x − y|,

(5)dmax(A,B) = max {|x − y| ∶ x ∈ A, y ∈ B}.
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Efficiency axiom (Sect. 2); this axiom would have to be weakened substantially to 
make it compatible with this kind of fairness.11

6.2 � Recommendations

The choice of a shortlisting rule has to be made in consideration of the application 
scenario. Each application comes with its own desiderata, which can be compared 
to the axiomatic results obtained here (Table 2). Moreover, there might be practical 
restrictions on the complexity of voting rule, i.e., how difficult it is to understand 
the voting process. We view most of the rules considered as suitable for practical 
use (with the possible exception of q-NCSA). Note that the explanation of a voting 
rule does not necessarily require a detailed rationale for the choice of parameter val-
ues. That is, parameterized rules (First k-Gap, Top-s-First-k-Gap, Size Priority, etc.) 
might be difficult to explain as classes of voting rules, but are much simpler when 
instantiated with concrete values.

Overall, we recommend three shortlisting methods based on our analysis: Size 
Priority, Top-s-First-k-Gap, and f -Threshold. Let us discuss their advantages and 
disadvantages:

•	 Size Priority, in particular Increasing Size Priority, is recommendable if the size 
of the winner set is of particular importance, e.g., in highly structured shortlist-
ing processes such as the nomination for awards. Increasing Size Priority exhib-
its good axiomatic properties (cf. Table 2) as well as a very solid behavior in our 
numerical experiments. In particular for the bias data set, where a (unknown) 
subset of candidates is discriminated against, Increasing Size Priority appears to 
be the best choice. By selecting k candidates with the highest approval scores (or 
more in case of ties), the differences in approval scores within the selected group 
are ignored and thus disadvantaged, high-quality candidates have a better chance 
to be chosen. On the other hand, Increasing Size Priority makes limited use of 
the available approval preferences and thus can be seen as a good choice mostly 
in settings with limited trust in voters’ accuracy. When voters are expected to 
have good estimates of the candidates’ qualities, the following two shortlisting 
rules are better suited.

•	 Our axiomatic analysis reveals First k-Gap as a particularly strong rule in that 
it is the minimal rule satisfying �-Stability. Furthermore, it is the only rule that 
adapts to increasing noise in our simulations. However, we have seen in Experi-
ment 2 (Sect. 5.5) that First k-Gap is prone to choosing winner sets that are larger 
than necessary. Thus, we recommend to use Top-s-First-k-Gap instead. Top-s
-First-k-Gap shares most axiomatic properties with First k-Gap (cf. Table  2) 
except �-Stability and Resistance to Clones. Another advantage of Top-s-First-
k-Gap is that the parameter k is difficult to choose for First k-Gap, whereas it 
is very reasonable to conservatively pick a large k-value for Top-s-First-k-Gap. 

11  The approach of Esmaeili et al. (2021), i.e., to impose bounds on the “price of fairness”, could be an 
interesting strategy to find suitable tradeoffs between efficiency and fairness.
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Choosing k too large simply diminishes the differences between Top-s-First-k-
Gap and ISP-k.

•	 Finally, Theorem 4 shows that f -Threshold rules are the only rules satisfying the 
Independence axiom. Therefore, if the selection of alternatives should be inde-
pendent from each other, then clearly a f -Threshold rule should be chosen. For 
example, the inclusion in the Baseball Hall of Fame should depend on the quality 
of a player and not on the quality of the other candidates. In our experiments, we 
have seen that the related class of Max-Score- f -Threshold rules has advantages 
over f -Threshold rules. The difference between these two classes, however, is 
only relevant if the maximum score of candidates differs between elections for 
reasons unrelated to the candidates’ quality. This was the case, e.g., in the Hugo 
data set, where the relative maximum approval score varied significantly between 
award categories.

6.3 � Future work

Our recommendations are applicable to most shortlisting scenarios. There are, how-
ever, possible variations of our shortlisting framework that require further analysis. 
For example, while strategyproofness is usually not important in election with inde-
pendent experts, there are some shortlisting applications with a more open electorate 
where this may become an issue (Quinn and Schneier 2016; Bredereck et al. 2017). 
We have not considered strategic voting in this paper and assume that this viewpoint 
will give rise to different recommendations. Moreover, it may be worth investigating 
whether using ordinal preferences (rankings) instead of approval ballots can increase 
the quality of the shortlisting process [shortlisting rules for ordinal preferences can 
be found, e.g., in the works of Elkind et  al. (2017a, 2017b), Aziz et  al. (2017b), 
Faliszewski et al. (2017)]. In general, the class of variable multi-winner rules (and 
social dichotomy functions) deserves further attention as many fundamental ques-
tions (concerning proportionality, axiomatic classifications, algorithms, etc.) are still 
unexplored.

Appendix

A. Original definition of q‑NCSA

Faliszewski et al. (2020) defined the q-NCSA-score of a set of candidates S ⊆ C for a 
real number q ∈ [0, 1] as follows:

This is equivalent to the definition given in this work as the following computation 
shows, where � is the indicator function and Av the set of candidates approved by v:

sc
q-NCSA

E
(S) =

∑

v∈V

(
|S ∩ Av|
|S|q −

|S ∩ Av|
|S|q

)
.
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B. Analysis of axiom satisfaction

Unanimity, anti‑unanimity, �‑stability

Let us analyze the considered shortlisting rules with regard to the three axioms Una-
nimity, Anti-Unanimity and �-Stability.

•	 It is straightforward to see that Approval Voting, f -Threshold, Max-Score- f
-Threshold and Largest Gap satisfy Unanimity and Anti-Unanimity for all non-
degenerate profiles. Hence, they cannot satisfy �-Stability for � > 1.

•	 By definition, First k-Gap satisfies Unanimity and �-Stability for k ≥ � for all 
elections. Therefore, it cannot satisfy Anti-Unanimity.

•	 First Majority satisfies Unanimity as c1 ∈ R(E) by definition and 
scE(ci) = maxc∈C(scE(c)) = scE(c1) implies ci ∈ R(E) . Furthermore, we claim 
that it satisfies Anti-Unanimity. Let c1,… , cm be the enumeration of the candi-
dates used by First Majority and let ci be the first candidate with scE(ci) = 0 . 
Then, 

∑
j>(i−1) scE(cj) > 0 while 

∑
j>(i−1) scE(cj) = 0 . This implies that ci ∉ R(E) . 

It follows that First Majority does not satisfy �-Stability for � > 1.
•	 Next-k satisfies Unanimity by definition. Furthermore, we claim that it satis-

fies Anti-Unanimity. Let c1,… , cm be the enumeration of the candidates used 
by Next-k and let ci be the first candidate with scE(ci) = 0 . Then, scE(ci−1) > 0 
while 

∑k

j=1
scE(c(i−1)+j) = 0 . This implies that ci ∉ R(E) . As before, it follows 

that Next-k does not satisfy �-Stability for � > 1.
•	 q-NCSA satisfies Unanimity and Anti-Unanimity. First, we show that 

q-NCSA satisfies Unanimity: Let ci be a candidate with scE(ci) = n . 
Then, sc

q-NCSA

E
({ci}) > 0 = sc

q-NCSA

E
(�) and therefore R(E) ≠ � . As 

scE(ci) = maxc∈C(scE(c)) this implies by Efficiency and Non-tiebreaking that 
ci ∈ R(E) . Now, we show that q-NCSA satisfies Anti-Unanimity: Let ci be a can-
didate with scE(ci) = 0 . Then 2scE(ci) − n < 0 , which means for every set S such 
that ci ∈ S that the q-NCSA-score of S is strictly smaller than the q-NCSA-score 
of S ⧵ {ci} . This means that the q-NCSA-score of S is not maximal. As S was 

∑

v∈V

(
|S ∩ Av|
|S|q −

|S ∩ Av|
|S|q

)
=

1

|S|q
∑

v∈V

(
∑

c∈S

�c∈v −
∑

c∈S

(1 − �c∈v)

)

=
1

|S|q
∑

c∈S

(
∑

v∈V

�c∈v −
∑

v∈V

(1 − �c∈v)

)

=
1

|S|q
∑

c∈S

(scE(c) − (n − scE(c)))

=
1

|S|q
∑

c∈S

(2scE(c) − n).
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chosen arbitrarily, we can conclude ci ∉ R(E) . As above, it follows that Next-k 
does not satisfy �-Stability for � > 1.

•	 Now, we claim that Size Priority always satisfies either Unanimity or Anti-Una-
nimity: First, we show that it satisfies Unanimity if m ⊳ 0 : As selecting all m 
candidates can never be tiebreaking, Size Priority will never select the empty set 
in this case. This implies c1 ∈ R(E) for all E. As Size Priority is non-tiebreaking 
it follows that all ci with scE(ci) = n must be in the winning shortlist. On the 
other hand, Size Priority satisfies Anti-Unanimity if 0 ⊳ m holds by a symmetric 
argument. Moreover, we claim that it satisfies both axioms (for non-degenerate 
profiles) if and only if it is a Decisive Size Priority rule. First let R be a Decisive 
Size Priority rule. Then, for every non-degenerate profile there must be a i such 
that c1,… , ci can be selected as winners without tiebreaking. As R is a Decisive 
Size Priority rule, we know i ⊳ m and i ⊳ 0 . It follows that R(E) is neither C nor 
∅ . By a similar argument as before, this implies that R satisfies Unanimity and 
Anti-Unanimity. Now assume that R is a Size Priority instance that is not deter-
mined. Then there exists a 0 < k < m such that either m ⊳ k or 0 ⊳ k . Consider 
an election E such that scE(ci) = n for all i ≤ k and scE(cj) = 0 if j > k . Then, in 
the first case all candidates are winners and hence Anti-Unanimity is violated 
and in the second case no candidate is a winner and hence Unanimity is violated. 
It follows from the above that Increasing Size Priority satisfies Unanimity but 
not Anti-Unanimity. Finally, Size Priority, by definition, satisfies �-Stability for 
� > 1 if and only if 0 or m is the most preferred size.

•	 Finally, Top-s-First-k-Gap satisfies Unanimity because First k-Gap and Increas-
ing Size Priority do so. That means for all election both winner sets W ′ and W ′′ 
considered by Top-s-First-k-Gap satisfy unanimity. Hence, whatever set is cho-
sen, unanimity is satisfied. On the other hand, it satisfies neither �-Stability for 
� > 1 nor Anti-Unanimity. Consider first the election given by sc(E) = (3, 2, 0, 0) 
and Top-1-First-2-Gap. Then {c1} is the winner set and hence 2-Stability is vio-
lated. Now consider the same election under Top-3-First-3-Gap. Then both W ′ 
and W ′′ equal {c1,… , c4} and hence Anti-Unanimity is violated.

Determined

As mentioned in the main text, all shortlisting rules considered in this paper, expect 
f -Threshold, Size Priority and q-NCSA are determined by definition.

•	 For f -Threshold it is clear that R(E) can be empty if no candidate achieves 
enough approvals to clear the threshold. Observe that this is not the case for 
Max-Score- f -Threshold, as we assume f (n) < n and hence candidates with max-
imal score are always winners.

•	 Size Priority returns the empty set if 0 is the most preferred set size that does not 
require tiebreaking. This cannot happen if Size Priority is either a Decisive Size 
Priority rule or m ⊳ 0 ; Size Priority is determined in these cases. In particular 
this means that Increasing Size Priority is determined.
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•	 For q-NCSA we observe that if no candidate has at least 50% approvals then 
2scE(c) − n is negative for all candidates and hence the q-NCSA-score is only 
maximized by the empty set. Hence q-NCSA is not determined.

Independence of losing alternatives

Clearly, f -Threshold satisfies Independence of Losing Alternatives as it also satis-
fies Independence. As removing a losing alternative does not change the maximal 
score, the same holds for Max-Score- f -Threshold. Furthermore, as the removal 
of a losing alternative can only widen the gap between the winners and the non-
winners, First k-Gap satisfies Independence of Losing Alternatives, and so does 
Approval Voting, which is a special case of First k-Gap. Finally, for q-NCSA the 
removal of a losing alternative just removes some non-maximal sets from con-
sideration. Clearly, this does not change which sets have maximal q-NCSA-score.

None of the other rules satisfy Independence of Losing Alternatives.

•	 First Majority: Assume E is an election such that sc(E) = (3, 2, 1, 0) . Then the 
winner set under First Majority is {c1, c2} but removing c3 changes the winner 
set to {c1}.

•	 Largest Gap: Consider the same election as for First Majority. Then, the win-
ner set under Largest Gap is {c1} but removing c3 changes this to {c1, c2}.

•	 Next-k : Consider an election E with sc(E) = (4, 3, 2, 0) . Then, for every 
k > 1 , we have R(E) = {c1, c2} under Next-k , but after deleting c3 we have 
R(E) = {c1}.

Consider, e.g., the class of Size Priority instances defined by any order of the 
form 2 ⊳ 1 ⊳ … and an election E with sc(E) = (2, 1, 1) . Then R(E) = {c1} but the 
removal of c3 leads to R(E) = {c1, c2} . Thus, Size Priority fails Independence of 
Losing Alternatives in general. However, we claim that every class of Increasing 
Size Priority instances satisfies Independence of Losing Alternatives. We distin-
guish two cases: First assume all m-alternatives are selected. Then Independence 
of Losing Alternatives is vacuously satisfied as there are no losing alternatives. 
On the other hand, assume that there is a k < m such that {c1,… , ck} is winning. 
As R is an Increasing Size Priority instance there is a k′ ≤ k such that ⊳ restricted 
to {1,… ,m} starts with k� ⊳ k� + 1 ⊳ ⋯ ⊳ k . As k < m the same holds for ⊳ 
restricted to {1,… ,m − 1} . Hence if we remove an alternative ck∗ with k∗ > k the 
winner set does not change.

Finally, we claim that Top-s-First-k-Gap also satisfies Independence of Losing 
Alternatives. Assume first that the set of winners W ′ under First k-Gap is smaller 
than s. After removing a losing alternative, the set of winners under First k-Gap 
remains the same and is hence still smaller then s. It follows that the winner set 
under Top-s-First-k-Gap does not change. Now assume that W ′ is larger than s. 
Then, the winner set of Top-s-First-k-Gap has size at least s. Now, removing an 
alternative cj for j > s cannot create a larger gap between the first s alternatives. It 
follows that the winner set under First k-Gap after removing cj is still larger then 
s. This means by definition that the winner set of Top-s-First-k-Gap before and 
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after removing cj was the winner set of Increasing Size Priority. As Increasing 
Size Priority satisfies Independence of Losing Alternatives, we can conclude that 
Top-s-First-k-Gap does so as well.

Resistance to clones

Clearly, Independence implies Resistance to Clones. Hence, f -Threshold satisfies 
Resistance to Clones. As cloning does not change the maximal score, the same 
holds for Max-Score- f -Threshold. Furthermore, cloning has no effect on gaps, 
hence Largest Gap and First k-Gap satisfy Resistance to Clones. If follows that 
Approval Voting also satisfies Resistance to Clones as it is a special case of First 
k-Gap.

For First Majority and Next-k it can be helpful for an alternative to be cloned. 
For example, consider an election with scE = (3, 2, 0) . Then the set of First 
Majority winners would be {c1} but after cloning c2 , the set of First Majority win-
ners is {c1, c2, c�2} where c′

2
 is the clone of c2 . Similarly let scE = (2, 1, 0) . Then the 

set of Next-k winners for every k would be {c1} . If we clone c2 , then, for all k ≥ 2 , 
Next-k selects {c1, c2, c�2} where c′

2
 is the clone of c2.

Moreover, q-NCSA also does not satisfy Resistance to Clones. Consider for 
example 0.5-NCSA, assume we have 10 voters and let scE = (10, 7, 7) . Then 
the 0.5-NCSA-scores of {c1} , {c1, c2} and {c1, c2, c3} are 10/1, 14∕

√
2 ≈ 9.899 

and 18∕
√
3 ≈ 10.392 respectively. Therefore {c1, c2, c3} is the winner set. Now, 

if we add a clone c∗
1
 of c1 we get the 0.5-NCSA-scores 10/1, 20∕

√
2 ≈ 14.142 , 

24∕
√
3 ≈ 13.856 and 28∕

√
4 = 14 for {c1} , {c1, c∗1} , {c1, c

∗
1
, c2} and {c1, c∗1, c2, c3} 

respectively. Therefore, {c1, c∗1} is winning.
Finally, Size Priority generally does not satisfy Resistance to Clones as clon-

ing may harm an alternative. For example, consider 2 ⊳ 3 ⊳ … and scE = (2, 1, 0) . 
Then the set of Size Priority winners is {c1, c2} , but if we clone c1 , then c2 is not a 
winner any more. This also shows that neither Increasing Size Priority nor Top-s
-First-k-Gap are resistant to clones (set s = 2 and k = 2 for the latter).

Set monotonicity

•	 Let E be an election with sc(E) = (2, 2, 1, 1, 1, 1) . Then under First Majority we 
have R(E) = {c1, c2, c3} . Now if a voter who did not approve {c1, c2, c3} before 
approves it, then we get sc(E) = (3, 3, 2, 1, 1, 1) and hence R(E) = {c1, c2}.

•	 For Max-Score- f -Threshold first assume 

 Let sc(E) = (5, 2) . Then c1 is the only winner, but after adding one approval to c1 
the winner set becomes {c1, c2} . Now, assume f (n) = � ⋅ n for some 0 ≤ 𝛼 < 1 . 

f (n) ∶=

{
n − 1 if n is odd,

1 otherwise.
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First assume scE(ci) > 𝛼max(sc(E)) and hence ci ∈ R(E) . Then after adding one 
approval to all winning candidates, we have 

 This implies ci ∈ R(E∗) . On the other hand, assume scE(ci) ≤ �max(sc(E)) and 
hence ci ∉ R(E) . Then scE∗ (ci) = scE(ci) < 𝛼(max(sc(E))) ≤ 𝛼max(sc(E∗)) . It 
follows that ci ∉ R(E∗) . Therefore, Max-Score- f -Threshold satisfies Set Mono-
tonicity for constant f.

•	 Clearly, adding approvals for all winners can only increase the gap between 
winners and non-winners. Hence First k-Gap and Largest Gap satisfy Set 
Monotonicity. Approval Voting is a special case of First k-Gap and hence also 
satisfies Set Monotonicity.

•	 For f -Threshold clearly all winning candidates are still above the threshold 
in E∗ and all non-winning candidates remain below the threshold. Hence Set 
Monotonicity is satisfied.

•	 Size Priority: It is easy to see that a set {c1,… , ci} is non-tiebreaking in E if 
and only if it is non-tiebreaking in E∗ . Hence, Size Priority satisfies Set Mono-
tonicity.

•	 Next-k : Let {c1,… , c
�
} be the winner set. First, let i < � . By 

choice of � we have scE(ci) ≤
∑k

j=1
scE(ci+j) . As i + 1 ≤ � we have 

scE∗ (ci) = scE(ci) + 1 ≤
∑k

j=1
scE(ci+j) + 1 ≤

∑k

j=1
scE∗ (ci+j) . On the other 

hand scE∗ (c�) > scE(c�) >
∑k

j=1
scE(c�+j) =

∑k

j=1
scE∗ (c�+j) . It follows that 

{c1,… , c
�
} is also the winner set under E∗.

•	 q-NCSA: Let W = {c1,… , ck} be a the largest set with maximum q-NCSA-
score. It holds that 

 Now consider a set W � = {c1,… , ci} . Consider first i < k . Then we have by the 
same argument as above 

 Now, by the choice of k we have scq-NCSA
E

(W �) ≤ sc
q-NCSA

E
(W �) and because i < k 

we have |W ′| < |W| . It follows that scq-NCSA
E∗ (W �) ≤ sc

q-NCSA

E∗ (W �) . Now assume 
k < i . Then we have 

scE∗ (ci) = scE(ci) + 1 > 𝛼max(sc(E)) + 1 ≥

𝛼(max(sc(E)) + 1) = 𝛼max(sc(E∗)).

sc
q-NCSA

E∗ (W) =
1

|W|q
∑

c∈W

(2scE∗ (c) − n) =

=
1

|W|q
∑

c∈W

(2(scE(c) + 1) − n) =

= sc
q-NCSA

E
(W) +

2|W|
|W|q

= sc
q-NCSA

E
(W) + 2|W|1−q

sc
q-NCSA

E∗ (W �) = sc
q-NCSA

E
(W �) + 2|W �|1−q
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 Again, by the choice of k we have scq-NCSA
E

(W �) ≤ sc
q-NCSA

E
(W �) . Moreover, 

because i > k we have |W ′| > |W| and hence 

 It follows that scq-NCSA
E∗ (W �) ≤ sc

q-NCSA

E∗ (W �) and hence W is still the largest set 
with maximal q-NCSA-score.

•	 Finally, consider Top-s-First-k-Gap. Assume first that the set of winners W ′ 
under First k-Gap is smaller than s. As First k-Gap satisfies Set Monotonicity, W ′ 
remains the winner set in E∗ . It is still smaller than s and therefore still the win-
ner under Top-s-First-k-Gap. Now assume that W ′ is larger than s. Then, the win-
ner set of Top-s-First-k-Gap has size at least s. Adding one approval to the first 
s alternatives does not create a new k gap between them. It follows that the win-
ner set under First k-Gap is still larger then s. This means by definition that the 
winner set of Top-s-First-k-Gap in E and E∗ is the winner set of Increasing Size 
Priority. As Increasing Size Priority satisfies Set Monotonicity, we can conclude 
that Top-s-First-k-Gap does so as well.

Superset monotonicity

It was shown in the main text that Increasing Size Priority, First k-Gap and Top-s
-First-k-Gap satisfy Superset Monotonicity. Let us now show that First Majority, f
-Threshold, Max-Score- f -Threshold, Next-k , Largest Gap and Size Priority do not 
satisfy Superset Monotonicity.

•	 Clearly, Superset Monotonicity implies Set Monotonicity, hence First Majority 
cannot satisfy Superset Monotonicity.

•	 First, consider an election E with n = 3 such that sc(E) = (2, 1) . Then 
R(E) = {c1} under f -Threshold with f = n∕2 . Now, if one voter additionally 
approves {c1, c2} , then R(E) = {c1, c2}.

•	 Next, consider an election E such that sc(E) = (4, 2) . Consider Max-Score- f
-Threshold with f (n) = n∕2 . Then R(E) = {c1} . Now, if one voter additionally 
approves {c1, c2} , then R(E) = {c1, c2}.

•	 For Next-k , consider an election E such that sc(E) = (3, 1, 1) . Then the winner set 
under Next-k is {c1} . Now, if a voter changes her mind and additionally approves 
all three alternatives, then all three alternatives become winners under Next-k 
(for every k > 1).

sc
q-NCSA

E∗ (W �) =
1

|W �|q

(
∑

j≤k

(2(scE(cj) + 1) − n

)
+
∑

j>k

(2scE(cj) − n)

= sc
q-NCSA

E
(W �) +

2|W|
|W �|q

2|W|
|W ′|q <

2|W|
|W|q
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•	 Next, consider an election E such that sc(E) = (2, 1, 0) . For Largest Gap, 
R(E) = {c1} . If one voter additionally approves {c1, c2} , then sc(E) = (3, 2, 0) 
and R(E) = {c1, c2}.

•	 For Size Priority, consider an election E with sc(E) = (2, 1, 1) and 2 ⊳ 1 ⊳ 3 ⊳ 0 . 
Then R(E) = {c1} . Now, if one voter additionally approves {c1, c2} , then 
R(E) = {c1, c2}.

•	 For 0.5-NCSA, consider an election E with sc(E) = (90, 90, 67) and n = 98 . 
Here, the winner set is {c1, c2} with sc

q-NCSA

E
({c1, c2}) ≈ 115.97 and 

sc
q-NCSA

E
({c1, c2, c3}) ≈ 115.47 . However, for sc(E∗) = (91, 91, 68) (one voter 

who previously approved no one, now approves every candidate), we obtain 
sc

q-NCSA

E∗ ({c1, c2}) ≈ 118.79 and scq-NCSA
E∗ ({c1, c2, c3}) ≈ 118.93.

C. Proof of Claim 1 in Proposition 1

Claim 1 Let E be an election. Then if scE(ci) = scE(ci+1) and

then also

Proof  Assume scE(ci) = scE(ci+1) and scq-NCSAE ({c1,… , ci−1}) ≤ scq-NCSAE ({c1,… , ci})

sc
q-NCSA

E
({c1,… , ci−1}) ≤ sc

q-NCSA

E
({c1,… , ci}) . To enhance readability, we write x 

for 
∑i−1

k=1
(2scE(ck) − n) and y for 2scE(ci) − n . Then, we can write

as

Now, defining z as iq − (i − 1)q , we can rewrite this as

Then we can do the following computation:

sc
q-NCSA

E
({c1,… , ci−1}) ≤ sc

q-NCSA

E
({c1,… , ci})

sc
q-NCSA

E
({c1,… , ci}) ≤ sc

q-NCSA

E
({c1,… , ci+1}).

sc
q-NCSA

E
({c1,… , ci−1}) ≤ sc

q-NCSA

E
({c1,… , ci})

x

|{c1,… , ci−1}|q
=

x

(i − 1)q
≤

x + y

iq
=

x + y

|{c1,… , ci}|q

x

(i − 1)q
≤

x + y

(i − 1)q + (iq − (i − 1)q)
=

x + y

(i − 1)q + z
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Now replacing x, y,  z again by their respective definition we get for the left-hand 
side:

Observe that, by definition, we have y = 2scE(ci) − n = 2scE(ci+1) − n . Therefore, 
we can write the right-hand side as

Now, we claim that because 0 ≤ q ≤ 1 we have

We observe that the both sides of the equation equal the change of the function xq 
in an interval of one. Because the derivative of f (x) = xq for 0 ≤ q ≤ 1 is monotone 
declining, we can bound this change using the slope of f(x) in either the starting or 
end point of the interval as follows

Therefore, we have

x

(i − 1)q
≤

x + y

(i − 1)q + z

x((i − 1)q + z) ≤ (x + y)(i − 1)q

x(i − 1)q + xz ≤ x(i − 1)q + y(i − 1)q

xz ≤ y(i − 1)q

xz + yz ≤ y(i − 1)q + yz

z(x + y) ≤ y((i − 1)q + z)

z
x + y

(i − 1)q + z
≤ y

x + y + z
x + y

(i − 1)q + z
≤ x + y + y

(x + y)((i − 1)q + z)

(i − 1)q + z
+ z

x + y

(i − 1)q + z
≤ x + 2y

x + y

(i − 1)q + z
((i − 1)q + 2z) ≤ x + 2y

x + y

(i − 1)q + z
≤

x + 2y

((i − 1)q + 2z)

∑i−1

k=1
(2scE(ck) − n) + (2scE(ci) − n)

(i − 1)q + (iq − (i − 1)q)
=

∑i

k=1
(2scE(ck) − n)

iq

= sc
q-NCSA

E
({c1,… , ci})

∑i−1

k=1
(2scE(ck) − n) + (2scE(ci) − n) + (2scE(ci+1) − n)

(i − 1)q + (iq − (i − 1)q) + z
=

∑i+1

k=1
(2scE(ck) − n)

iq + z

z = iq − (i − 1)q ≥ (i + 1)q − iq.

1 ⋅ f �(x + 1) ≤ f (x + 1) − f (x) ≤ 1 ⋅ f �(x).

iq − (i − 1)q ≥ f �(i) ≥ (i + 1)q − iq
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It follows that

All together we have shown

This concludes the proof. 	�  ◻

Supplementary Information  The online version contains supplementary material available at https://​doi.​
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